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Standard ensemble or particle filtering schemes do not properly represent states of low
priori probability when the number of available samples is too small, as is often the case
in practical applications. We introduce here a set of parametric resampling methods
to solve this problem. Motivated by a general H -theorem for relative entropy, we
construct parametric models for the filter distributions as maximum-entropy/minimum-
information models consistent with moments of the particle ensemble. When the prior
distributions are modeled as mixtures of Gaussians, our method naturally generalizes
the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the
new particle filters presented here to two simple test cases: a one-dimensional diffusion
process in a double-well potential and the three-dimensional chaotic dynamical system
of Lorenz.

KEY WORDS: Bayesian estimation, filtering, particle methods, maximum-entropy,
mixture models, ensemble Kalman filter

1. INTRODUCTION

In many application areas a Markov chain model is appropriate but the process is
hidden and the only information available about it comes from a set of incomplete
and imperfect measurements. This includes statistical signal processing, econo-
metrics, and data assimilation in the geosciences. In abstract terms, a stochastic
evolution equation produces successive transitions xt → xt+1, t ∈ N between el-
ements of the state space X . An observation equation gives the probabilities of
the measured values yt , t ∈ N in the space of possible outcomes Y . From the
statistical point of view, the most detailed estimate of the state of the system up to
time t is contained in the conditional probability density P(x0, . . . , xt | y1, . . . , yt ),
given the observations up to that time. Such posterior probabilities can be obtained

1 1Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD
21218 U.S.A.; e-mail: eyink@ams.jhu.edu
2Department of Mathematics, University of Arizona, Tucson, AZ 85721, U.S.A.

1071

0022-4715/06/0600-1071/0 C© 2006 Springer Science+Business Media, Inc.



1072 Eyink and Kim

from the prior distributions in the absence of observations by means of Bayes’
theorem. Particularly important in many applications, e.g. meteorological weather
forecasting, is the estimation of the current state of the system given the past
observations, i.e. the probability density P(xt | y1, . . . , yt ). To be useful, such an
estimate must be obtained sequentially or recursively in time, as new measure-
ments become available. Obtaining such probabilities in this way is known as the
Bayesian filtering problem or optimal filtering problem.

Ensemble or particle filtering methods are a set of efficient and flexible Monte
Carlo methods to solve the optimal filtering problem. These methods employ a
large number N of random samples or “particles,” advanced in time by the stochas-
tic evolution equation, to approximate the probability densities. A resampling at
measurement times both generates and destroys particles so as to representatively
populate the regions of state space with high posterior probability. Such schemes
were first proposed by Metropolis and Ulam,(44) but computing resources available
at the time did not lend to their widespread use. However, following the seminal
paper of Gordon, Salmon and Smith,(27) particle filtering methods have attracted
strong general interest. Several recent books(12,36) and review articles(10) testify
to their growing popularity and increasing range of applications. The methods
possess several advantages that account for this surge of interest. First, they are
straightforward to apply, since they require only the computation of a large number
of solutions of the evolution equation of the problem. Second, they can easily be
applied when the dynamics are nonlinear and the statistics highly non-Gaussian.
Finally, the approximations that are yielded for the system statistics have been
proved to converge to the optimal filter results in the limit as N → ∞ and the
convergence rate is independent of the dimension of the state space; see refs. 45,
47 or 10 for a review.

However, there are certain important application areas where the number of
samples N that are practically available is very restricted, due to the high dimen-
sionality of the state space X . For example, in fields such as oceanography and
climatology the computational cost of solving the evolution equation (a General
Circulation Model, or GCM) is so high that at most N = 10–100 samples may
be computed over time-intervals of interest. Nevertheless there is great interest in
making proper estimates of the state of such systems given observational data.(25)

With so few samples Monte Carlo error estimates are very large and the per-
formance of ensemble/particle methods that are theoretically convergent may in
practice be quite poor. A typical failure that occurs when the number of particles
is small is that these methods neglect to sample states properly—e.g. states that
are very improbable before measurements but very probable after them—because
there are no particles present to represent them. In any problem where the number
N of samples is so restricted it is clear that one must choose judiciously the mem-
bers of the small ensemble, for instance, by using some prior knowledge about the
statistics of the system.
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One way to solve these difficulties with small sample-size is to use parametric
models to represent the state probabilities. Events of small probability are always
represented in such models and, if the model is carefully constructed, at realistic
levels. An example of a particle filtering scheme that uses such an approach is
the Ensemble Kalman Filter (EnKF), which was proposed by Evensen.(16,17) As
in all Kalman filtering schemes, it implements Bayes’ theorem using a Gaussian
probability density to model the system statistics prior to measurements. It can
be expected to work better than convergent particle filtering schemes in certain
cases where the number N of samples is small, because the Gaussian model
exhibits all states with a certain finite probability, even those far from the mean.
This superior performance will be exhibited in some concrete examples presented
below. On the other hand, this method does not yield the optimal estimates in
the limit N → ∞, unless the state variables are normally distributed. Thus, there
is motivation to generalize this approach to better predict large-scale nonlinear
systems with highly non-Gaussian statistics.

In this paper, we shall explore such particle filtering schemes, using non-
Gaussian parametric models for the purpose of Bayesian updating and resam-
pling. In particular, the simplest generalization of the Ensemble Kalman Fil-
ter will be considered, which models prior distributions by mixture models of
weighted sums of Gaussians.(43) EnKF can be recovered in the special case of
a single Gaussian component. Mixture models are a very natural device to ac-
commodate multimodal and skewed distributions, with a modest additional cost
in computation compared with EnKF. The use of Gaussian mixture models for
optimal nonlinear filtering was proposed already some time ago(2) and such meth-
ods have been investigated for application to large-scale geophysical systems in
refs. 2 and 5. However, these works used Gaussian mixture-models essentially as
density-kernel estimators. Thus, for every ensemble-member (or for some spec-
ified fraction of ensemble members) a Gaussian density was determined, and
the sum over all of these Gaussian kernels was then taken as the estimator for
the probability density in state space. Our approach is rather different and is
motivated instead by the notion of “multiple climate regimes,” which is an old
idea in geophysics (e.g. refs. 53 and 48 for the atmospheric circulation and ref.
62 for the oceanic thermohaline circulation.) The Gaussian components in our
mixture models are supposed to represent such “climate regimes” and not indi-
vidual ensemble members. Of course, this means that to apply our method one
must develop appropriate Gaussian mixture models to represent the climate dis-
tribution. Fortunately, this problem has already been considered in the literature:
see refs. 60 and 28 for a review of advanced statistical techniques that may be
applied.

Another very important element of our approach is the use of a maximum
entropy characterization to select the weights, means, and covariances of the Gaus-
sian components of the mixture. In a certain sense, this scheme provides “minimal
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models” consistent with the information contained in the particle ensemble and
is motivated by a rigorous H -theorem (Section 3.2). The maximum entropy char-
acterization yields a practical optimization algorithm to determine parameters of
the model density given moments of the ensemble. In recognition of the impor-
tant role of this characterization in our proposed new filtering method, we shall
refer to the method as the Maximum Entropy Filter (MEF). Furthermore, entropy
plays other constructive roles in our approach. A maximum-entropy estimate of
the post-measurement state provides a simplified “mean-field” approximation to
the Bayesian update. This estimate is substantially cheaper to calculate than the
full Bayesian estimate and may be a practical alternative when computational re-
quirements for the latter exceed available resources. The entropy itself also serves
as a useful measure of the information content of the observations and its rate of
degradation over time.(1,9,29,37) The entropy is therefore a potentially very useful
side-product of our choice of maximum-entropy distributions as parametric mod-
els. A preliminary discussion of this method applied to a particular model system
has already appeared.(35)

A brief outline of the contents of the present paper is as follows: In Section
2 we discuss the filtering problem in a general state-space model and its recursive
solution. In Section 3 we introduce our new entropy-based particle filters. First
we discuss the construction of models for “background” or “reference” distri-
butions in the absence of measurements, using Gaussian mixture models (3.1).
Then we discuss the maximum-entropy estimation of probability densities with
respect to a chosen reference density (3.2). On the basis of these results, we then
elaborate our approach to particle filtering by resampling from maximum-entropy
distributions (3.3). A simplified mean-field approach is also introduced to update
distributions at measurements, based on a maximum-entropy criterion (3.4). In
Section 4 we present results of numerical experiments with these methods ap-
plied to a diffusion process in a double-well potential (4.1) and to the chaotic
3-dimensional dynamical system of Lorenz (4.2). Our summary and conclusions
are given in Section 5. Finally, in Appendices, we briefly review some standard
ensemble/particle filters (Appendix A), and then we present important thermo-
dynamical relations and functions for our maximum-entropy models (Appendix
B), strategies for a efficient sampling from the models (Appendix C), and a
comparison of the computational costs of the various particle filters considered
(Appendix D).

2. THE FILTERING PROBLEM

In this section we shall describe the optimal filtering problem in more tech-
nical detail. We first discuss the general state space model set-up of the problem
(see refs. 12, 36). Let xt ∈ X and yt ∈ Y for t ∈ N be two vector-valued stochastic
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processes, usually called the signal process and the observation process, respec-
tively. In most of the applications of interest, the states spaces of these processes
may be taken to be X = R

p and Y = R
q , and it will here be assumed that q < p.

The signal process is a Markov process with initial distribution P0(dx) and tran-
sition probability Pt+1|t (dx | x′). We shall usually assume that these probability
measures have densities P0(x) and Pt+1|t (x | x′) with respect to Lebesgue measure
(at least in a generalized sense). A good example to keep in mind is the solution
xt of the following type of stochastic map

xt+1 = ft (xt , ν t ), t = 0, 1, . . . , T (1)

where ν t ∈ R
r is a random noise vector with known distribution �t (dν) and

ft : R
p × R

r → R
p. Thus,

Pt+1|t (x|x′) =
∫

�t (dν)δ p(x − ft (x
′, ν)). (2)

A special case of (1) of great practical importance is that when the equation
is deterministic, i.e. the distribution �t (dν) is a delta-measure and ν t appears
in (1) as a (non-random) parameter. As for the measurement process yt , it is
assumed to be conditionally independent of the signal process and to have marginal
distribution Gt (yt ∈ A|xt = x) = ∫

A dqy Gt (y|x). A simple example is provided
by the following measurement model

yt = ht (xt ) + εt , t = 1, . . . , T (3)

where ht : R
p → R

q are measured functions of the state variable and εt ∈ R
q are

random observation errors, mutually independent and independent of the signal
process, with probability density Rt (ε). In that case,

Gt (y|x) = Rt (y − ht (x)). (4)

This framework includes the case that measurements are made only at a subset of
times TM = {tm, m = 1, . . . , M} (or at no times at all) by taking εt at all other
times t �∈ TM to be normal with variance tending to infinity.

The optimal filtering problem is to obtain the set of conditional probability
densities P(xt |y1, . . . , yt ). These may be obtained by a standard recursive appli-
cation of Bayes’ Theorem. The filter density P(x, t) obtained by this recursion is
discontinuous in time at instants where observations are incorporated. To state the
algorithm, we introduce the following notation for the filter densities before and
after measurements:

P(x, t−) = P(xt = x|y1, . . . , yt−1), P(x, t+) = P(xt = x|y1, . . . , yt ).

We also use the convention that P(x, 0+) = P0(x). We shall refer to the lefthand
limit P(x, t−) as the “prior” or “forecast” density and to the righthand limit
P(x, t+) as the “posterior” or “analysis” density. Then the sequential filtering
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algorithm can be implemented through a two-step procedure:

(1) Prediction: Advancing the probability density between measurements by
means of the forward Kolmogorov equation,

P(x, t−) =
∫

d px′ Pt |t−1(x|x′)P(x′, t − 1+), (5)

(2) Updating: Conditioning upon measurements by means of Bayes’ rule,

P(x, t+) = 1

Nt
Gt (yt |x)P(x, t−), (6)

where Nt is a normalization factor and t = 1, . . . , T . This simple recursive solu-
tion to the optimal filtering problem is the basis of most numerical techniques to
approximate the filter densities.

We recall that a useful side-product of this standard filter algorithm is the like-
lihood function G1:T (y1, y2, . . . , yT ) of the observations, or the probability density
for this sequence of observations to occur. The normalization factors in Bayes’
rule (6) are just the conditional probability densities Nt = Gt (yt |y1, . . . , yt−1)
which, taken together, yield

G1:T (y1, y2, . . . , yT ) =
T∏

t=1

Nt (7)

This is called the innovation form of the likelihood function.(36) A standard applica-
tion of this quantity is maximum-likelihood estimation.(13,50) For example, suppose
that the dynamical Eq. (1) has ft (x, ν; θ ) depending upon a vector parameter θ with
values in some domain �. Then—given the observations y1, y2, . . . , yT —it is nat-
ural to estimate the parameter by the value θ∗ which maximizes the likelihood of
those data:

θ∗ = argsup
θ∈�

G1:T (y1, y2, . . . , yT ; θ ). (8)

Thus, the filtering algorithm automatically enables parameter estimation.

3. ENTROPY-BASED PARTICLE FILTERING SCHEMES

We shall now introduce our new ensemble/particle method for approximating
filter probability densities. Our aim is to generalize the Ensemble Kalman Filter
method (Appendix A.2) to achieve better performance when statistics are highly
non-normal. The key idea of the Bayes update in our approach is to use the particle
information prior to the measurement to determine a non-Gaussian parametric
model of the distribution. Bayes’ rule is then applied to this model, altering the
probabilities of the various states. Finally, new samples are drawn from the model
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with the updated parameters to create a particle ensemble that is evolved forward
to the next measurement time.

3.1. Mixture Models for the Background Density

The first step in our construction of an appropriate parametric model is to
develop a representation for the distribution of the stochastic process in the absence
of any measurements. We shall denote this distribution by Q(x, t) and refer to it
as the “background” or “reference” distribution. Its importance is due to the
fact that, at long times between measurements and for sufficiently mixing Markov
processes, the filter distribution P(x, t) is expected to relax back to this background
distribution. That is, the memory of information gained from observations is
expected to fade between measurements. In general, the reference distribution
Q(x, t) is just the evolution of the initial distribution P0(x) under the forward
Kolmogorov equation. If the initial distribution is the invariant distribution P∗(x),
then the Markov signal process is stationary and Q(x, t) = P∗(x) for all times t .
In geophysical applications this time-invariant background would be called the
“climatology”.

Within our general scheme, various approaches may be followed for modeling
the reference distribution Q(x, t). We shall consider here only one possibility, the
use of mixture models. In this approach, the model of the background is taken to
be a weighted combination of a finite number of normal distributions. In other
words, the model density is of the form

QM (x, t) =
M∑

m=1

wm(t)N (x; µm(t), Cm(t)) (9)

where N (x; µ, C) is the multivariate normal density with mean µ and covariance
matrix C. The positive integer M is called the mixture complexity. See ref. 43
for a comprehensive, current introduction to the literature. A mixture model den-
sity can be constructed to converge to the density of the true distribution Q by
increasing the mixture complexity M . However, we shall assume here that M is
some relatively small positive integer (as in EnKF, where M = 1.) Methodolo-
gies for consistent estimation of a mixing distribution are discussed in ref. 32
and its references, while schemes to estimate mixture complexity are discussed
in more detail in refs. 43, 51, 52. From a geophysical point of view, the mixture
components represent “modes”/“patterns”/“regimes” of climate. As discussed in
the Introduction, the idea that there may be just a few such long-lived “regimes”
through which the climate system cycles in some fashion is an old speculation
in the field: see ref. 61 for a recent review. A number of advanced statistical
techniques are available to construct mixture models of such multiple-regime cli-
mate systems. For example, refs. 28, 60 employ a probabilistic clustering method
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using cross-validated likelihood.(59) A less objective but more intuitive approach
to determine the weights, means and covariances of the mixture components is to
perform conditional averaging over a large ensemble of realizations of the dynam-
ics (1), for given values of an “index” that are assumed to characterize the climate
“regime”. The fraction of time for which those index values occur then determines
the weight of the associated component in the mixture model and the conditional
mean and covariance determine the corresponding parameters of the component
Gaussian. We employ this simple procedure later to construct mixture models for
our numerical examples.

3.2. Maximum-Entropy Distributions

We now consider the problem of modeling the filter density P(x, t), given
a model of the background distribution Q(x, t). Needless to say, the effect in
P(x, t) of conditioning upon observations taken before time t will make it unequal
to Q(x, t). However, at long times between measurements P(x, t) is expected to
converge back toward Q(x, t). A measure of this is the relative entropy orKullback-
Leibler distance,(9,39) defined as

H (P(t)|Q(t)) =
∫

dx P(x, t) ln

(
P(x, t)

Q(x, t)

)
. (10)

It is known that for an ergodic, Markov process this quantity is a Lyapunov function,
that is, a nonnegative, convex function of P(t) which is non-increasing in time
and which vanishes only when P(t) = Q(t) ; see refs. 55, 56 and 9, Section 2.9.
When the process is non-deterministic—e.g. a non-degenerate diffusion—then
the relative entropy is monotonically decreasing in time. Therefore, to represent
the filter distribution we would like to choose a model such that this “distance” of
P(x, t) from Q(x, t) is as small as possible, consistent with the results of earlier
measurements. At the current time t, new measurements of a function ht (x) will be
taken. We recall that P(x, t−) denotes the forecast density, or the filter distribution
just before those measurements. The moments in that distribution of the measured
variable,

ηt− = 〈ht 〉t− , Ht− = 〈
ht h



t

〉
t− , (11)

represent the measurement forecast at the time t , both the mean ηt− and the co-
variance matrix CH

t− = Ht− − ηt−η

t− . Any reasonable model for P(x, t−) should

be consistent at least with these measurement forecasts. One could demand con-
sistency with still further moment constraints, for example, the first and second
moments µt− = 〈x〉t− , Mt− = 〈xx
〉t− of the state vector x itself. These repre-
sent the state forecast, both its mean µt− and covariance Ct− = Mt− − µt−µ


t− ,

and are also a very natural set of constraints. In principle, the maximum-
entropy approximation could even be systematized by considering sequences of



Maximum-Entropy Filter 1079

moment-constraints involving polynomials xii , xi1 xi2 , . . . , xi1 . . . xin of increasing
degree n. In certain cases this sequence of maximum-entropy approximations to the
probability density has been proved to converge to the true density as n → ∞ (e.g.
ref. 23). Convergence may hold more generally, but constructing the nth approx-
imant in the sequence involves the determination of O(pn) parameters and this
will be prohibitively difficult when p � 1. See Appendix D.

We therefore take as our model the maximum-entropy (or, equivalently,
minimum-information) distribution consistent with the measurement forecast.
More precisely, we model P(x, t−) with the probability density which minimizes
(10) with the moments (11) as constraints. Introducing as Lagrange multipliers a
q-vector λ and a q × q symmetric matrix �, one easily finds that the maximum-
entropy density belongs to an exponential family(15,26,64)

P(x, t ; λ,�) = exp[λ·ht (x) + 1
2�:ht (x)h


t (x)]

Zt (λ,�)
Q(x, t). (12)

Note that Zt (λ,�) is a normalization factor to ensure that (12) integrates to
unity. One can use this factor to define the convex, cumulant-generating function
Ft (λ,�) = log Zt (λ,�). Then the moments (η, H) in (11) are obtained by taking
derivatives, as follows:

ηi = ∂ Ft

∂λi
(λ,�), Hi j = ∂ Ft

∂�i j
(λ,�), i �= j,

1

2
Hii = ∂ Ft

∂�i i
(λ,�), i = j (13)

In turn, the parameters (λ,�) corresponding to given (η, H) are uniquely deter-
mined as the optimizers in the Legendre transform

Ht (η, H) = sup
λ,�

{
η·λ + 1

2
H:� − Ft (λ,�)

}
(14)

which gives the relative entropy for the model density (12). See refs. 15, 26, 64.
Technical simplifications in the maximum-entropy formalism occur (just as

in Kalman methods) when the model background density QM (x, t) is a mixture
of Gaussians (9) and when the measured quantities ht (x) in (3) are affine func-
tions of x, i.e. ht (x) = Ht x + dt for each time t = 1, . . . , T . In that case, the
cumulant-generating function Ft (λ,�) = log Zt (λ,�) can be calculated explic-
itly, as shown in Appendix B. Another advantage of the mixture model in (9) when
the measurement function is affine is that the maximum-entropy densities (12) are
also mixture models:

PM (x, t ; λ,�) =
M∑

m=1

wm(t ; λ,�)N (x; µm(t ; λ,�), Cm(t ; �)), (15)
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where wm(t ; λ,�), µm(t ; λ,�) and Cm(t ; �) are modified weights, means and
covariance matrices, respectively, calculated explicitly in Appendix B. We also
discuss in that appendix strategies to deal with measurement of nonlinear (i.e.
non-affine) functions, by linearization or by extended state space approaches.

3.3. The Maximum Entropy Filter

We can now outline the basic steps in the Maximum Entropy Filter (MEF)
method. Between measurements, the particles x(n)(t), n = 1, . . . , N evolve inde-
pendently under (1), just as in the standard particle methods discussed in Appendix
A. The main difference with those methods consists in how Bayes’ theorem is ap-
plied at measurement times. We shall assume that the measurement error εt in (3)
is an N (0, Rt ) random q-vector, i.e. normal with mean 0 and covariance matrix
Rt . This is the situation most frequently encountered in practice. There are then
three main steps in the implementation of Bayes’ theorem in the MEF method:

(i) Matching: The moments ηt− , Ht− in (11) are determined by averaging over
the N -particle forecast ensemble:

ηt− = 1

N

N∑
n=1

ht

(
x(n)

t−
)
, Ht− = 1

N

N∑
n=1

ht

(
x(n)

t−
)
h


t

(
x(n)

t−
)
, (16)

A maximum-entropy density (12) is matched to these forecast statistics,
with fitting parameters (λt− ,�t− ) determined from the optimization (14).

(ii) Updating: Bayes’ theorem is now applied, which, for normal error statis-
tics, yields another maximum-entropy distribution (12) with parameters
(λt+ ,�t+ ) given by

λt+ = λt− + R−1
t yt , �t+ = �t− − R−1

t , (17)

if yt is the outcome of the measurement at time t .
(iii) Resampling: A new N -sample ensemble x(n)

t+ , n = 1, . . . , N is created,
by sampling from the model posterior P(x, t+), the maximum-entropy
distribution (12) with updated parameters (λt+ ,�t+).

Let us say a few words on the practical implementation of these three steps.
To carry out the matching in step (i), one must solve the maximization

problem (14). When the reference distribution is represented by a mixture model
QM (x, t) and the measurement function is affine, then the domain dom(Ft ) of the
convex function in (14) has a non-empty complement, at points where the matrix
� is too large, and the values of Ft rise to infinity approaching the boundary
of the domain from the interior. Therefore, algorithms to carry out the convex
optimization must ensure that iterates stay within the feasible region dom(Ft ). As
shown in Appendix B, inside the domain it is possible to calculate exactly the
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gradients of Ft in (13), which can be used in minimization by descent algorithms.
In our experiments below, we shall use a conjugate gradient (CG) algorithm in the
space of q(q+3)

2 variables (λ,�). Note that the number of variables only depends
on the dimension q of the measured vector and not on the dimension p of the
state vector, so that computational cost is considerably reduced when q � p. We
employ a feasible Armijo line-search in our CG steps, so that the iterates never
go outside of dom(Ft ).(49) The calculation of Ft (λ,�) and its gradients contains
an efficient check of feasibility of the current trial vector (λ,�), since model
realizability can fail if and only if Cholesky factors employed in the calculation
fail to exist. See Appendix B.

The update step (ii) is trivial to implement, requiring only matrix additions
and multiplications (as long as the inverse measurement error covariance R−1

t
is known). This is another great technical advantage of using maximum-entropy
models for the filter distributions.

The resampling step (iii) can also be carried out efficiently using the mix-
ture representation (15). One must simply select among the M components with
probabilities wm, m = 1, . . . , M and then sample from the normal distribution
N (µm, Cm) for the selected m. When the dimension of the state space is small
enough, simple standard methods are available for constructing realizations of
random vectors x from the distribution N (µm, Cm). For example, one may take

x = µm + Sm · ξ (18)

where ξ is a normal random p-vector with mean 0 and covariance matrix I, and
Sm is a matrix square root of the symmetric, positive-definite covariance matrix
Cm , satisfying Cm = SmS


m . Computable examples of square roots include the
lower-triangular Cholesky factor Lm and the square root obtained by spectral
analysis as Qm = OmD1/2

m , where Dm = diag(γ 1
m, . . . , γ

p
m ) is the diagonal matrix

of eigenvalues of Cm and Om = [ê1
m, . . . , êp

m] is the orthogonal matrix whose
columns are the orthonormal set of eigenvectors. In that case,

x = µm +
p∑

a=1

ξa

√
γ a

m êa
m, (19)

where ξa, a = 1, . . . , p are i.i.d. normal random variables with mean 0 and vari-
ance 1. Note that the eigenvectors are just the modes of the “principal orthogonal
decomposition” (POD) of the state space R

p or the “empirical orthogonal func-
tions” (EOF’s) corresponding to the covariance Cm and (19) is the Karhunen-Loève
(K-L) representation of Gaussian random vector x; see ref. 41. The methods out-
lined above are practical when the dimension p of the state space is not too large.
For resampling methods in case p � 1, see Appendix C.

Note that if the model background distribution QM (x, t) consists of a sin-
gle Gaussian component and if the model prior distribution PM (x, t−) is a
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maximum-entropy distribution constrained by the full state statistics of second
order, µt− = 〈x〉t− , Mt− = 〈xx
〉t− , then the MEF method is equivalent to the En-
semble Kalman Filter (EnKF)(7,17,66) (also, Appendix A). Thus, our MEF method
can be considered a natural generalization of EnKF to problems with highly non-
Gaussian statistics. Note that the algorithm yields also a simple formula for the
likelihood function, or rather, for the log-likelihood L1: T in the innovation form
L1: T = log G1:T = ∑T

t=1 logNt . In fact, it is easy using (12) to calculate the
normalization Nt as

logNt = 
Ft − 1

2
y


t R−1
t yt − 1

2
log[(2π )qDetRt ], (20)

where


Ft = Ft (λt+ ,�t+ ) − Ft (λt− ,�t− )

is the jump in the function value of Ft during the measurement at time t.

3.4. A Mean-Field Filter

In certain applications—e.g. numerical weather prediction—the dimension of
the measured vector is itself very large, q � 1. In such cases, the MEF method as
discussed above may not be practical. The optimization over q(q+3)

2 variables in the
matching step (i) of MEF has a computational cost O(Mq3), from the calculation
of the function Ft and its gradients, which grows rapidly with q (see Appendix
D). Even EnKF, when implemented by the representer algorithm discussed in
Appendix D, requires O(q3) multiplications in order to invert covariances CH

t− +
Rt , and this will also not be practical when p � q � 1. An entire literature has
grown up around the problem of reducing the cost of Kalman filtering for q � 1,

e.g. by batching measurements(3,31,34) or by other means.(18) To help deal with such
cases within our framework, we can formulate an alternative maximum-entropy
procedure in which the optimization is over only q variables. In this approach, we
still apply Bayes’ rule, but in a more approximate manner, to averages over the
N particles. Therefore, we call this alternative procedure the MEF method with
a “mean-field update,” or, more simply, the Mean-Field Filter (MFF). We have
previously discussed this mean-field approach applied to hindcasting (smoothing)
in ref. 21 and we refer the reader to that work for a more thorough discussion.

Algorithmically, the mean-field method is easily described. Both the matching
step (i) and the update step (ii) are changed, as follows:

Matching: We now take as our model of P(x, t−), the filter density before
the measurement, a maximum-entropy distribution with only the first moments
in Eq. (11), i.e. ηt− = 〈ht 〉t− , as constraints. This density is a member of the
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exponential family

P(x, t ; λ) = 1

Zt (λ)
exp[λ · ht (x)] · Q(x, t) (21)

with Zt (λ) the normalization factor. The q-vector λ is a Lagrange multiplier whose
value λt− is that yielding the supremum in

Ht (η) = sup
λ

{η · λ − Ft (λ)} (22)

for η = ηt− . Note that Ft (λ) = log Zt (λ), similar to the definition earlier.
Updating: The update of ηt− to ηt+ is obtained from the optimization

ηt+ = arginf
η

{
Ht (η|ηt− ) + 1

2
[η − yt ]


R−1
t [η − yt ]

}
(23)

where

Ht (η|ηt−) = Ht (η) − Ht (ηt− ) − (η − ηt−)·λt− . (24)

The latter is a positive, convex function whose minimum value (zero) is obtained
at the unique point η = ηt− . Thus, the update ηt+ is a compromise between the
minimizers ηt− and yt of the first and second terms in (23).

Resampling: This step is essentially the same as before. Once the value λt+

is determined corresponding to ηt+ , then the maximum-entropy distribution (21)
for λ = λt+ can be sampled using its representation by a mixture model [Eq. (15)
with � set to zero].

The meaning of the new update procedure is best seen from the significance of
the entropy function (24) in large deviations theory.(15) If N independent samples
x(n)

t−, n = 1, . . . , N are drawn from the model distribution P(x, t ; λt−), the large-
deviations result is, roughly speaking, that

Prob

{
1

N

N∑
n=1

ht

(
x(n)

t−
) ≈ η

}
∼ exp[−N · Ht (η|ηt−)] (25)

as N → ∞, with Ht (η|ηt−) as in (24). We can also take an i.i.d. set {ε(n)
t , n =

1, . . . , N } of N (0, Rt ) random variables, representing observation errors, and de-
fine the ensemble of measured values y(n)

t = ht (x
(n)
t− ) + ε

(n)
t , n = 1, . . . , N . Then

a large deviations result holds also for the joint probability as N → ∞

Prob

{
1

N

N∑
n=1

ht

(
x(n)

t−
) ≈ η,

1

N

N∑
n=1

y(n)
t ≈ y

}
∼ exp[−N · Ht (η, y|ηt− )] (26)

where the joint-entropy Ht (η, y|ηt− ) is the function in curly brackets in (23). It fol-
lows that the value ηt+ defined in (23) is the most probable value of 1

N

∑N
n=1 ht (x

(n)
t− )
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for the ensemble conditioned upon 1
N

∑N
n=1 y(n)

t = y, in the limit as N → ∞. This
is still an application of Bayes’ rule, but with the above “mean-field condition”
on the sum rather than the correct condition that y(n)

t = y for all n = 1, . . . , N .

There is expected to be not much difference between the mean-field condition and
the exact condition when the N -sample average takes on the value y if and only if
every term in the sum is approximately equal to the same value y. For example,
it may be that transition between two “regimes” of climate is by some universal
pathway. In that case, whenever such a transition is observed, the time-sequence of
states will be closely similar and every member of an ensemble of such histories
will be nearly the same as the ensemble-mean. The mean-field approximation will
then be very good (See ref. 21).

There is also a natural mean-field analogue of the log-likelihood. It follows
directly from (26) by a steepest descent result (contraction principle) that

Prob

{
1

N

N∑
n=1

y(n)
t ≈ y

}
∼ exp[−N · H Y

t (y|ηt−)] (27)

as N → ∞, where

H Y
t (y|ηt− ) = min

η
Ht (η, y|ηt− ) = min

η

{
Ht (η|ηt−) + 1

2
[η − y]
R−1

t [η − y]

}
which is the same minimization as in the mean-field update (23). From (27) it is
reasonable to define

lnNt = −H Y
t (yt |ηt−) (28)

as the mean-field analogue of the log-innovation. Notice that this quantity is
always non-positive, is concave in yt , and = 0 if and only yt = ηt−. If the
dynamics is linear and all statistics are normal, then (28) becomes lnNt =
−[yt − ηt−]
(CY

t−)−1[yt − ηt−]/2 with CY
t− = CH

t− + Rt . This is the exact re-
sult up to constant terms independent of yt (cf. Eq. (37) below). Because the
large-deviations result (27) has only logarithmic accuracy, one should expect to
miss such constant terms. This does not detract necessarily from the utility of
(28) to make maximum-likelihood estimates of parameters for distinct sequences
y1, y2, . . . , yT of observations.

In a practical implementation of the MFF method, one can avoid the cal-
culation of ηt+ in (23). Instead, one can calculate λt+ , H Y

t (yt |ηt−) directly by
combining (22) and (23) into a single optimization:

λt+ = arginf
λ

{
ηt (λ) · (λ − λt− ) − Ft (λ) + Ft (λt−)

+ [ηt (λ) − yt ]
R−1
t [ηt (λ) − yt ]

2

}
(29)
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with also

H Y
t (yt |ηt−) = inf

λ

{
ηt (λ) · (λ − λt− ) − Ft (λ)

+ Ft (λt−) + [ηt (λ) − yt ]
R−1
t [ηt (λ) − yt ]

2

}
(30)

where ηt (λ) = ∂ Ft

∂λ
(λ). To carry out the optimization in (29) by a descent algorithm,

one must be able to calculate Ft (λ), ∂ Ft

∂λ
(λ), and ∂2 Ft

∂λ∂λ
(λ). In the case that the model

QM (x, t) is a finite mixture, these results are given in Appendix B. Although it
is necessary in the optimization to use the second-derivative matrix of Ft , which
is a q × q matrix, notice that all that is really needed is the contribution to the
λ-gradient of the function inside the brackets in Eq. (29):

∂2 Ft

∂λ∂λ
(λ)
{
λ − λt− + R−1

t [ηt (λ) − yt ]
}
. (31)

Hence, a descent algorithm may be coded so that storage requirements are only
O(q) and not O(q2). It is important to take advantage of such memory-savings in
order to make the algorithm practical when q is very large.

4. NUMERICAL EXPERIMENTS

In this section we shall test the previously discussed particle filtering schemes
in application to two simple dynamic models with highly non-Gaussian statistics.
The first model is a nonlinear stochastic diffusion process in a double-well po-
tential and the second is the 3-variable chaotic dynamical system of Lorenz.(42)

These low-dimensional models have been chosen as test cases so that optimal
results from convergent filtering schemes are available for comparison with our
approximate (suboptimal) filtering methods. One of these optimal schemes is a
standard convergent particle method, which we call the Weight Resampling Filter
(WRF), that is reviewed in Appendix A. We shall also compare the results of
our new filters with a standard suboptimal method, the Ensemble Kalman Filter
(EnKF), also reviewed in Appendix A.

4.1. Double-Well Diffusion

Our first experiments will be for a 1-variable diffusion process which is given
as the solution of the (Ito) stochastic differential equation with κ > 0

dx = f (x) dt + κ dW (t), (32)

where W (t) is the Wiener process and f (x) = 4x − 4x3. We call this the double-
well (DW) diffusion model. The invariant measure of this random process has
probability density P∗(x) ∝ exp(− 2U (x)

κ2 ) where the potential U (x) = −2x2 + x4.
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This density is bimodal and, in particular, non-Gaussian. Thus, this model has two
regimes of “climate”, corresponding to the two modes of the stationary distribu-
tion. The time series of the process is characterized by random switches between
the two wells of the potential with minima located at x = ±1. An important issue
in estimating this process is whether a given method can succeed in tracking a
succession of such transitions.

We shall perform so-called “identical twin” experiments on this system with
artificial measurements of the state x(t) taken at a discrete sampling interval 
T
from a single realization of the process, which represents “reality”. Observational
errors will be simulated by adding to each of the sampled values an independent
random variable from a normal distribution with mean 0 and variance R. We
shall then make an estimate of the process conditioned upon those measurements,
using the various particle filtering methods. The algorithms that we discussed in
the previous sections were for discrete stochastic maps with measurements taken
at each time step. These apply to the above stochastic differential equation when
it is discretized for numerical integration. We use the simple Euler-Maruyama
scheme(38)

x(tk+1) = x(tk) + f (x(tk))
t + κ Nk

√

t,

tk+1 = tk + 
t (33)

with 
t = 0.01, where Nk is a sequence of i.i.d. standard normal random variables.
When tk is an integer multiple of 
T, then we take a measurement with variance
R, and otherwise we take no measurement or, equivalently, a measurement with
infinite variance. We shall test our various particle filtering schemes in the ex-
periments below against a convergent optimal filtering scheme using a numerical
discretization of the Fokker-Planck equation to evolve the system statistics. For
more details, see ref. 21.

In order to apply the MEF method, we must construct a model for the back-
ground Q(x, t). Here we shall assume that the initial condition x0 is drawn from
the invariant measure P∗(x), so that the reference density is time-independent and
Q(x) = P∗(x). Although we know the invariant measure exactly for this simple
model, in order to illustrate the MEF method we need to construct a model by a
mixture of Gaussians. Because of the bimodality of the invariant measure, we use
a mixture QM (x) of complexity M = 2. The sign-variable sign(x) can serve as
an “index” to distinguish between the two regimes of “climate” in state-space. In
order to construct the weights, means, and variances of the mixture components,
we thus compute a single realization for a long time and gather probabilities
w± for the complementary events {sign(x) = ±1}, and means and variances
µ±, C± conditioned on these two events. Then we take w± to be the weights, and
µ±, C± the component parameters of our Gaussian mixture model. In practice,
we symmetrize the numerical results so that w− = w+ = 0.5, µ− = −µ+, and
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Fig. 1. Exact steady state density for DW model, κ = 0.4 (dashed line) and mixture model with M = 2
(solid line).

C− = C+. Our mixture model is then

QM (x) = w−N (x ; µ−, C−) + w+N (x ; µ+, C+). (34)

By construction, (34) has the same mean and variance of x as does the exact
invariant measure. For the noise strength κ = 0.4 the densities of the invariant
measure and the mixture model with µ+ = 0.98, C+ = 0.011 are plotted in
Fig. 1. Clearly, the mixture model (34) is here a quite good approximation.

4.1.1. Experiment A

Our first estimation experiment is for model (32) with this value, κ = 0.4.

The “true” sample path was chosen to start in the positive well at x = +1. A
realization starting in one well remains there an amount of time on average τ

which can be estimated from a weak-noise asymptotics, the Kramer formula:

τ ∼ 2π√
U ′′(1)|U ′′(0)| exp

(
2
U

κ2

)
, 
U = U (0) − U (1), (35)

valid as κ → 0.(30,54) For our choice of parameters in this experiment, τ ≈ 3 × 105.

On the other hand, when transitions occur, they require only about 5–6 time units to
complete. Hence, the dynamics of this system consists of long periods of random
diffusion about the bottom of a “well” interspersed with relatively rapid transitions,
occupying a fraction of only about 10−4 of the total time. In our study we follow
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just the first such transition for a time-interval of 20 units around the point where
the solution x(t) passes through the unstable equilibrium at x = 0. On that interval
we take seven measurements of the state x(t) separated in time by 
T = 2 and
contaminated with normal random errors of variance R = 0.04.

In this concrete setting, let us remind the reader of the specific steps that are
taken in our new entropy-based filters.

We first consider MEF. At each of the seven measurement times t , we must
choose a maximum-entropy distribution (12) to match the current particle ensem-
ble {xn(t−) : n = 1, . . . , N } in the moments ηt− = 〈x(t−)〉, Ht− = 〈x2(t−)〉 of
the measured variable ht (x) = x . The matching is accomplished by carrying out
the minimization in (14). The “free-energy” function Ft (λ,�) that appears there
is now a function of just two real variables and this function and its derivatives are
calculated from the formulas (70), (72)–(74) in Appendix B. Since the domain of
the convex function Ft has a non-empty complement, we use a conjugate gradient
scheme with a feasible Armijo line-search for the minimization in (14). This yields
the parameters λt− ,�t− that are then updated to λt+ ,�t+ by Bayes’ rule as in (17).
The new maximum-entropy distribution with the updated parameters must lastly
be resampled to yield the post-measurement ensemble {xn(t+) : n = 1, . . . , N }.
This is done by using the mixture representation (15) for m = ±1, with weights,
means, and covariances given by (60), (64), (71), respectively, from Appendix B.
These quantities are now all trivial to compute, since vectors are 1-dimensional
and matrices 1 × 1. As discussed in Section 3.1, we can finally obtain the updated
ensemble by choosing, for each n = 1, . . . , N , one of the components m = ±1 of
the mixture with probability wm(λt+ ,�t+ )—call it mn—and then setting

xn(t+) = µmn (λt+ ,�t+ ) +√
Cmn (�t+)ξn, (36)

where ξn are i.i.d. N (0, 1) random variables for n = 1, . . . , N . Equation (36) is
the analogue of (19) for our problem. This new set of samples is then evolved
forward with the Eq. (32) to the next measurement time and the process repeated.

The procedure for MFF is similar and even somewhat simpler. A maximum-
entropy distribution of the form (21) is chosen to match the pre-measurement
ensemble {xn(t−) : n = 1, . . . , N } in just the first moment ηt− = 〈x(t−)〉. The
matching is accomplished by carrying out the minimization over the single vari-
able λ in (22), where the “free-energy” function Ft (λ) and its first derivative are
calculated from the formulas (79), (80) in Appendix B. We again use a conjugate-
gradient algorithm for the minimization, yielding the parameter λt− . However,
unlike MEF, the update step to calculate λt+ is now carried out by a second min-
imization, as in (29). For this purpose the second derivative of Ft is also needed,
in addition to the function and its first derivative, and this is given by (81) in
Appendix B. Resampling the updated distribution is very similar as in MEF but is
even more elementary, since the weights, means, and covariances of the two Gaus-
sian components are given by the simpler formulas (76), (77), (78) in Appendix B.
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Fig. 2. Particle filter results for Experiment A with N = 10 samples: (a) WRF, (b) EnKF, (c) MEF,
(d) MFF. The circles represent measurements taken from one sample path and the solid lines are the
mean and mean ± standard deviations of the approximate filters. The dot-dashed lines are the mean
and mean ± standard deviations from the Fokker-Planck solution of ref. 21.

In particular, the variances Cm, m = ±1 are not changed at all in the update. The
formula (36) is used finally, just as in MEF, in order to generate the new ensemble
{xn(t+) : n = 1, . . . , N } of analysis samples.

In Fig. 2 we show the results of applying the four particle methods, WRF,
EnKF, MEF and MFF, to the DW model with such a set of measurements, using
N = 10 particles. All the methods are initialized by sampling from the exact in-
variant measure using a Metropolis-Hastings algorithm. Therefore, all the methods
show the same behavior, nearly zero mean and standard deviation close to one,
before the first measurement. Up to the time of the transition at about t = 10, they
continue to be very similar, except MFF, which shows a much larger variance than
the others at times t = 8–12. After the transition, the methods all differ consider-
ably. WRF and EnKF completely miss the transition and show almost no evidence
of its existence. MEF and MFF capture the transition and estimate well its time
and duration. MEF, in particular, is quite close to the optimal filter result, which
is included in Fig. 2 for comparison. Interestingly, WRF performs the poorest of
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all the particle methods, despite its being the only one of the four which is con-
vergent to the optimal result in the limit as N → ∞. This exemplifies a general
difficulty with WRF when the number of samples is small and a state (x = −1) is
very improbable before a measurement, but very probable afterward. After several
measurements at times t =2–8 indicating the state is near x = +1, all 10 particles
are in that well. When the measurement comes at t = 10 indicating a transition,
there is no particle in the well at x = −1 to carry the weight. EnKF fails for a
related reason, because it models the system statistics by a Gaussian density with
mean ≈ +1 and small standard deviation ≈ 0.1 before the measurement. The
Kalman gain is essentially a ratio between this standard deviation and the standard
deviation of the measurement error, here 0.2. Therefore, there is insufficient gain
at the observed transition to switch any of the 10 particles in EnKF to the other well
at x = −1. MFF tracks the transition well, but is a little “premature” in suggesting
a transition at time t = 8–10. On the other hand, the mean stays positive there
and, despite the downward shift, the large standard deviation is consistent with the
trajectory remaining near x = +1. At time t = 10, the mean becomes close to −1,

faithfully reflecting the transition. As discussed in more detail in ref. 21, MFF in
general follows observations too closely when the data lie near to the background
average (here x = 0) and it tends to overpredict variances during transitions. MEF
performs so well in this experiment that it would be hard to improve upon it.

In Fig. 3 we show the results of the four methods for the same estima-
tion experiment using N = 102 particles. Except for reduced fluctuations in the
ensemble-averages, there is little difference from the results for N = 10 in Fig. 2.
This is to be expected. The calculation from formula (35) shows that only about
1 sample in 104 selected from the steady-state ensemble will be in transition be-
tween the two wells at any single time. Thus, N = 100 particles is not enough for
WRF— after repeated measurements of the state in one well—to have any ensem-
ble member making the transition to the other well. The situation with EnKF is
even worse, because increasing N has almost no effect on the Kalman gain. The
only useful consequence of increasing N is to generate a few samples sufficiently
near to transition that the small gain from the measurements can shift them to the
other well. Finally, we see that the results of MEF and MFF for N = 102 are also
little changed from those for N = 10. Like EnKF, these methods perform very
similarly for all values of N . However, unlike EnKF, MEF and MFF both succeed
well in tracking the transitions.

In Fig. 4 we show the results of the four methods for the same estimation ex-
periment using N = 104 particles. It now becomes clear that WRF is a convergent
scheme, as it begins to approach closely the optimal filter results. With N = 104,

there are enough particles either remaining in the well at x = −1 or switching
back to that well in order for WRF to catch the transition at time t = 10. EnKF
now indicates that there is a transition, but it lags the actual one by four time units.
Because EnKF is “overconfident” that the state is near x = +1, two additional
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Fig. 3. Particle filter results for Experiment A with N = 102 samples: (a) WRF, (b) EnKF, (c) MEF,
(d) MFF. Symbols as in Fig. 2.

measurements indicating that the state is in the other well are necessary to nudge
some particles to make the transition. These results do not change much when N
is further increased and seem to represent the limit for EnKF as N → ∞. The
results of both MEF and MFF for N = 104 are again little changed from those
for N = 10 or 102, except that fluctuations are even smaller and the curves even
smoother. It is one of the virtues of these methods that they very rapidly achieve
their asymptotic N → ∞ limit, already for relatively small N .

The conclusions that we have reached by examination of the plots can be
confirmed quantitatively by considering the relative mean error, defined, for any
quantity ξ (t) over the time interval 0 < t < T, as∫ T

0
dt |ξap(t) − ξex (t)|

/∫ T

0
dt |ξex (t)|

where ξex is exact and ξap is approximate. We give these values in Table I for
the mean of the state variable x(t) over the interval 0 < t < 20 : For N = 10 and
N = 102, WRF and EnKF results are poor, MFF reasonable, and MEF very good.
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Fig. 4. Particle filter results for Experiment A with N = 104 samples: (a) WRF, (b) EnKF, (c) MEF,
(d) MFF. Symbols as in Fig. 2.

For N = 104, MEF and MFF results are very similar to those for N = 102, while
the results for the convergent scheme WRF are much improved (but not quite as
good as those for MEF).

The likelihoods G1: t (y1, . . . , yt ) of the first t measured values are additional
quantities that are approximated by the various filtering schemes, whose accu-
racy we would like to compare. Filtering methods supply the likelihoods in the

Table I. Relative errors in Experiment A

N WRF EnKF MEF MFF

(a) Filter Mean
102 1.12297975 1.10542974 0.01507894 0.09369440
104 0.01067231 0.52647795 0.00187048 0.06703097

(b) Filter Standard Deviation
102 0.03442152 0.03567663 0.03216601 0.57671912
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innovation form G1: t = ∏t
s=1 Ns . Note that in WRF the innovation Nt is obtained

from the normalization in (44). In EnKF the innovation may be consistently taken
to be a Gaussian

Nt =
exp

[
− 1

2

(
yt − µY

t−
)
(

CY
t−
)−1(

yt − µY
t−
)]

√
(2π )qDet

(
CY

t−
) , (37)

with µY
t− = µH

t−, CY
t− = CH

t− + Rt . This is the standard result in the Kalman for-
malism for linear problems with normal statistics.(24) We have already discussed
how to obtain the likelihoods—or, rather, their logarithms—in the entropy-based
methods, MEF and MFF. In Figs. 5 and 6 we plot the log-likelihoods L1: t = ln G1: t

of the four methods plotted against t, with a linear interpolation between measure-
ment times. For comparison, we show the results obtained when the innovations
Nt are calculated using the Fokker-Planck solution of ref. 21. Since the outcomes
for N = 10 and N = 102 are very similar, we only show the latter. The results are
quite consistent with those we saw in Figs. 2–4 for the means and standard devi-
ations. We see in Fig. 5 that MEF is already very accurate for N = 102 and MFF
reasonably good, but WRF and EnKF are much worse. Both MEF and MFF show a
slight drop around t ∼ 10, associated to the transition between wells. Because they
miss the transition, WRF and EnKF show a continual, sharp decrease, indicating
that —from the point of view of these approximations—the measurements in the
other “wrong” well are very unlikely. For N = 104, the plots in Fig. 6 show that
WRF and MEF now both give very good results, MFF still reasonably good and
EnKF very poor. The results for MEF and MFF with N = 104 are both very close
to those with N = 102. The underestimation of L1: t by MFF is consistent with its
overestimation of the variance σ 2(t), since the increased spread of the probability
density implies lower values of the density and thus decreased likelihoods. We
should caution that absolute values L1: t of the log-likelihood are of less interest
than differences 
L1: t for the purpose of parameter estimation by a maximum
likelihood criterion.

Finally, we shall plot in Figs. 7 and 8 the relative entropy H (t) as a function
of time for both the MEF and MFF methods, again with N = 102 and 104. For
comparison, we show the exact relative entropy calculated by a discretization of
the integral (10) using the Fokker-Planck solution from the scheme of ref. 21.
Furthermore, we also calculate a relative entropy from EnKF using the formula
for a pair of normal densities P = N (µ, C), Q = N (µ∗, C∗) that

H (P|Q) = 1

2
(µ − µ∗)
C−1

∗ (µ − µ∗) + 1

2
Tr[CC−1

∗ − I] − 1

2
ln

(
DetC

DetC∗

)
.

We take µ, C to be the mean and covariance from EnKF and µ∗, C∗ to be the mean
and covariance for the invariant measure, calculated from long-time averages.
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Fig. 5. Log-likelihoods L1: t versus time t for Experiment A with N = 102 samples: (a) WRF, (b)
EnKF, (c) MEF, (d) MFF. The circles (joined by dotted lines) are the exact values from the Fokker–
Planck solution of ref. 21, and the black dots (joined by solid lines) are the approximate values from
the particle filters.

This formula is consistent with the basic assumption of the EnKF method that
statistics of the system are Gaussian. Note, however, that it is not practical to
use this formula for EnKF when the dimension of the state-space p is large,
since the calculation of the determinant DetC at each time-step would cost O(p3)
multiplications. In Fig. 7 we plot the entropies for N = 102 and in Fig. 8 for
N = 104. Consistent with the results for the means and variances, we see that for
MEF and MFF there is little difference in these plots at different N , except that
the results for the smaller N are more random and rougher. All of the methods
agree in assigning a high information content to the final measurements, slow
to decay to zero, although EnKF poorly predicts the level. In general, EnKF
consistently underpredicts the relative entropy and furthermore its approximation
to the entropy often increases between measurements, violating the H -theorem.(9)

During transitions the MFF method also underpredicts the information content of
measurements because it (falsely) interprets them as a return to the steady-state
statistics described by the invariant measure rather than the passage of the system
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Fig. 6. Log-likelihoods L1: t versus time t for Experiment A with N = 104 samples: (a) WRF, (b)
EnKF, (c) MEF, (d) MFF. Symbols as in Fig. 5.

through the rare saddle-point state at x = 0. Away from transitions, the results for
MFF are similar to those for MEF. The entropy from MEF is very close to the exact
entropy.

4.1.2. Experiment B

Our second estimation experiment is for the same stochastic model (32) but
now with noise strength κ = 0.7. Because of the greater value of the diffusion,
transitions from one well to another are much more frequent and the mean res-
idence time in a well, as calculated from Eq. (35), is now τ ≈ 65.8. The time
required to make a transition is also somewhat shorter, taking about 1–2 time
units, but the fraction of time spent in transitions is greatly increased, to about
0.01–0.03. Thus, out of 100 randomly selected particles, a small handful may
be expected to be in the process of switching to the other well. Based upon our
considerations in the preceding subsection, we can expect that each of the particle
filtering methods will work well in this situation, using as few as just 100 samples.
We carry out Experiment B in order to verify this expectation.
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Fig. 7. Relative entropy for Experiment A with N = 102 samples: (a) EnKF, (b) MEF, (c) MFF. The
solid line is the approximation and the dashed line is the exact result from the Fokker–Planck solution.

We consider again a 20 unit time-segment of a single realization, in this case
containing a transition of the sample out of the well at x = −1 and then a second
transition back into it. As before, seven measurements are taken separated by

T = 2 time units and contaminated with normal random errors of mean zero
and variance R = 0.04. In MEF and MFF we use µ+ = 0.9322 and C+ = 0.0477
in the mixture model, calculated as discussed previously. We present results of all
the particle filters only for N = 102, since the curves simply become smoother for
increasing N and are otherwise unchanged. The means and standard deviations are
plotted in Fig. 9. Of the four methods, they may be rated in order as MEF, WRF,
EnKF, and MFF, from best to worst. However, all of the methods are relatively
successful here and give quite similar approximations to the filter mean. The
worst failing of the MFF method is that it, as usual, tends to overestimate the
variance. These conclusions from inspection of the graphs are made quantitative
by calculation of the relative mean errors, presented in Table II (for both N = 102

and N = 104).
We next consider the log-likelihoods L1: t of the four particle filtering meth-

ods, presented versus time t as before. The results are plotted in Fig. 10, again
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Fig. 8. Relative entropy for Experiment A with N = 104 samples: (a) EnKF, (b) MEF, (c) MFF.
Symbols as in Fig. 7.

just for N = 102. We now see that all of the methods work reasonably well, but
that WRF and MEF are both especially accurate. The remaining discrepancies
between the results of these two methods and those of the Fokker-Planck solution
for the log-likelihoods are apparently due only to statistical errors in the former
and discretization errors in the latter. The MFF results again slightly underestimate
the true log-likelihoods, consistent with the overestimate of the variances seen in
Fig. 9. However, the MFF approximation is reasonably good here. Of all the

Table II. Relative Errors in Experiment B

N WRF EnKF MEF MFF

(a) Filter Mean
102 0.04648154 0.07271474 0.04568027 0.13560871
104 0.00739388 0.05204111 0.00687383 0.09932946

(b) Filter Standard Deviation
102 0.08999746 0.18219459 0.08845087 0.404094241
104 0.01668710 0.15788042 0.01384682 0.379310678
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Fig. 9. Particle filter results for Experiment B with N = 102 samples: (a) WRF, (b) EnKF, (c) MEF,
(d) MFF. Symbols as in Fig. 2.

particle filtering methods, EnKF gives the worst approximation to the log-
likelihoods. This may be somewhat surprising, in view of the fact that its ap-
proximations to the means and variances in Fig. 9 are relatively accurate (better
than those of MFF, for example). This poor performance should be viewed as a
failure of the Gaussian assumption for the statistics, embodied in the standard
Kalman formula (37) that we adopted for EnKF. The true likelihoods are not nor-
mal distributions, as assumed in (37). We should caution again that a better test of
the methods from the point of view of maximum-likelihood estimation would be to
compare their maximizers over a set of parameters, for a given set of observations
y1, . . . , yT . For this purpose, only increments or differences of the log-likelihoods
matter, not the absolute values.

Finally, we consider the relative entropy as calculated approximately by EnKF,
MEF, and MFF with N = 102. The results are plotted in Fig. 11. EnKF and
MFF perform very similarly, with both somewhat underpredicting the entropy.
EnKF also violates the H -theorem by yielding occasionally an increasing relative
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Fig. 10. Log-likelihoods L1: t versus time t for Experiment B with N = 102 samples: (a) WRF, (b)
EnKF, (c) MEF, (d) MFF. Symbols as in Fig. 5.

entropy. MEF gives a quite good approximation to the exact entropy calculated
from the Fokker-Planck solution. Increasing N further makes all the curves in
Fig. 11 smoother but does not otherwise change the results for any of the methods.
Although WRF gives outcomes in Experiment B comparable to those of MEF
in all other respects, MEF has the advantage that it provides also an accurate
approximation of relative entropy.

4.2. Lorenz Model

Our last experiment will be for the chaotic 3-dimensional dynamical system
of Lorenz,(42) given by the differential equations:

dx

dt
= σ (y − x),

dy

dt
= (r − z)x − y,

dz

dt
= xy − bz, (38)

with coefficients classically chosen as σ = 10, r = 28, b = 8/3. We include this
example to illustrate a set of issues in the application of the particle filtering
methods to deterministic dynamical systems. A priori this will be a stringent test
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Fig. 11. Relative entropy for Experiment B with N = 102 samples: (a) EnKF, (b) MEF, (c) MFF.
Symbols as in Fig. 7.

of the entropy-based methods, for a couple of reasons. First, the probability densi-
ties in phase space for a deterministic dynamics evolve in time under the Liouville
equation(14) and the relative entropy of two solutions of this hyperbolic PDE is
conserved in time.(9) In this sense, the H -theorem that we have exploited for
stochastic systems holds for a deterministic dynamics in only a trivial sense. Fur-
thermore, the invariant measure of a dissipative dynamical system lives generally
on a strange attractor with zero Lebesgue measure. For example, the Lorenz dy-
namics at long times lives on the famous butterfly attractor with fractal dimension
about 2.06. As a consequence, any measure absolutely continuous with respect to
Lebesgue has infinite entropy relative to the invariant measure. Thus, we cannot
even define (a finite) relative entropy with respect to the long-term “climate”’ for
most reasonable initial distributions.

The answer to both of these problems, we shall see, is obtained by considering
“reduced” (or “marginal” or “coarse-grained”) densities of a subset of variables. It
is generally expected that “sufficiently chaotic” deterministic dynamics will have
natural invariant measures on their attractors—called SRB measures—which are
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smooth along unstable manifolds.(68) (Note that this has recently been rigorously
proved for the Lorenz model in ref. 65). This SRB measure will have reduced
densities absolutely continuous with respect to Lebesgue for subsets of variables
whose number is less than the fractal dimension of the attractor. Thus, it will be
possible to define relative entropies with respect to “climate” for such reduced
sets of variables. Furthermore, it is also expected that “coarse-graining” of high-
dimensional chaotic dynamical systems will produce effective dynamics of such
subsets of variables which is essentially stochastic.(19,40) Insofar as the Markov
property is valid, an H -theorem will hold in the reduced phase-space of this subset
of variables. In that case, the relative entropy of marginal densities will decrease
between measurements and our maximum-entropy/minimum information ansatz
for filter densities is still well-motivated. Note that, even if the H -theorem is
not valid, the reduced densities for smooth initial probability distributions will
converge in general to the reduced densities of the invariant measure at long times.
Thus, the relative entropy of marginals with respect to “climate” will generally
converge to zero, even if not monotonically.

For these reasons, we can expect that our entropy-based methods will work
well also for “sufficiently chaotic” deterministic dynamics and we shall illustrate
this point with the Lorenz 1963 model (38). Note, however, this system is not a
particularly good showcase for our methods. The Lorenz model, with the standard
choice of parameters, should be generally quite similar in its behavior to the
stochastic Double Well model in the Experiment B considered in the last section.
The phase point of the system switches chaotically from wing to wing of the
attractor, with a residence time on each wing of similar order as the time to make
the transition. Thus, we expect that all of the parametric resampling methods
(including EnKF) will be able to track the transitions with a relatively small
number of samples, N = 102, say. Our entropy methods apply to the Lorenz
model but are unlikely to perform substantially better here than EnKF.

We shall compare all of the particle methods with the results of a convergent
scheme, WRF, for a large number of samples. Since the Lorenz dynamics is
deterministic, we use a density kernel estimator to improve the representation of
the filter density, as discussed in Appendix A.1. To determine an optimal value of
the kernel width δN for sample size N , we employ a double density method.(11) In
this approach, the kernel width is chosen to minimize the difference between the
density kernel estimates for two different choices of the kernel function K . For
our application, we take

δN = argmin
δ

{∫ T

0
dt‖µN (t ; G, δ) − µN (t ; U, δ)‖

}
(39)

where µN (t ; K , δ) is the N -sample empirical mean of the state vector x(t) for the
density kernel K with width δ, and G and U are Gaussian and uniform densities,
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respectively, with mean 0 and standard deviation 1. We shall verify numerically
that the WRF results with δN chosen by (39) converge as N → ∞. These results
will then be taken as the exact conditional statistics for comparison with the
parametric particle filtering methods.

To apply the entropy filtering schemes, MEF and MFF, to the Lorenz Eq. (38)
we must build a mixture model QM (x, t) for the reference distribution. In our ex-
periment below, we shall sample the initial conditions from the invariant measure
on the strange attractor, which is thus the time-independent background. Because
we are interested mainly in the switching transitions from one wing to another
of the attractor, we shall employ a Gaussian mixture of complexity M = 2. We
construct the component weights, means, and covariances by using the function
I (x, y, z) = sign (x + y) as an “index” to characterize the regimes of the model.
Thus, we consider the complementary sets {sign (x + y) = ±1}, which each con-
tain one wing of the attractor. We then compute a single long time-trajectory of
the Lorenz system (38) for an initial condition on the attractor and extract from
it the probabilities w± of these two events, and the conditional means µ± and
covariance matrices C± :

µ± = (x̄±, ȳ±, z̄±)
 = (±6.36389, ±6.69471602, 23.5506805)
 (40)

C± =

 22.3056857 20.2011608 ±24.9259341

20.2011608 36.3717702 ±1.57754284

±24.9259341 ±1.57754284 74.3283071

 (41)

The numerical results have been symmetrized under the reflection (x, y, z) →
(−x,−y, z) that maps one wing to the other. We then construct the mixture model
with w± = 0.5 and with µ±, C± from (40), (41). This construction guarantees that
the model has the same second-order statistics (mean and covariance) as the exact
invariant measure. In Fig. 12 we compare the mixture model with two Gaussian
components and the Lorenz butterfly attractor. Although it is relatively crude, the
mixture model captures the dominant bimodality of the Lorenz model statistics.

4.2.1. Experiment C

In our numerical experiment we integrate the system of Eq. (38) by the
4th-order Runge-Kutta method with an integration step of 
t = 1/60. We take
as “reality” a particle started at x = (1.508870,−1.531271, 25.46091)
. Mea-
surements on the first two components (x, y) are collected at sampling intervals
of 
T = 1

6 , 1
3 , 2

3 , and 4
3 time units over the interval 0 < t < 16 and then con-

taminated with Gaussian errors of mean zero 0 and covariance R = ( 1 0
0 4 ) for all

measurement times. We seek the conditional statistics given this “observational”
data.
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Fig. 12. (a) The Lorenz attractor and (b) scatterplot of samples from the mixture model (M = 2), both
projected to the xy-plane.

We should say a few words about the implementation of MEF and MFF in this
context, since this example is a little less trivial and thus more instructive than the
double-well system considered in the previous experiments. The measured variable
ht (x) = (x, y)
 is now a 2-vector, so that the dual variable λt is also a 2-vector
and �t is a symmetric 2 × 2 matrix. Thus, the function Ft (λ,�) that appears in
the minimization (14) in the matching step of MEF depends upon 5 variables,
while the function Ft (λ) used in (22) for MFF depends upon 2 variables. The
evaluation of the functions and their derivatives using the formulas in Appendix B
thus involved 2 × 2 matrix operations for the former (e.g. Cholesky decomposition
and matrix inversion) and operations on 2-vectors for the latter (e.g. multiplication
by a known 2 × 2 matrix). The minimizations in each case were carried out with
a conjugate gradient scheme, using a feasible Armijo line-search in (14) for MEF,
since the domain of the convex function Ft (λ,�) has a non-empty complement.

Once the matching and updating steps were carried out by means of these
mimimizations, the new maximum-entropy distributions with updated parame-
ters were resampled. We might have used the same procedure for the Lorenz
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model as we did earlier for the double-well model, based upon Karhunen–Loève
expansions for the Gaussian components of the mixture model (15). However,
in realistic applications of MEF this will not be practical, since it would re-
quire computing the eigenvalues and eigenvectors of each of the symmetric
matrices Cm(�t+), m = 1, . . . , M at every measurement time t. Thus, we have
employed instead a more economical sampling scheme discussed in Appendix
C, using a Metropolis-Hastings algorithm to sample the Gaussian component
N (µm(λt+ ,�t+ ), Cm(�t+)) for m = ±. That is, based upon the “Hamiltonian”
(83), we accepted or rejected proposals sampled from N (µm(λt+ ,�t+ ), Cm), with
fixed covariance Cm, via its Karhunen-Loève expansion:

x′ = µm(λt+ ,�t+) +
3∑

a=1

ξa

√
γ

(a)
m ê(a)

m , m = ±. (42)

Here µm(λt+ ,�t+ ) is the vector given by (64) in Appendix B, ξa, a = 1, 2, 3 are
i.i.d. N (0, 1) random variables,

γ
(1)
± = 86.1296844, γ

(2)
± = 44.5555211, γ

(3)
± = 2.3205575

are the eigenvalues of the fixed matrices Cm, m = ± in (41), and

ê(1)
± =

 0.4096545

0.1945717

±0.8912491

 , ê(2)
± =

 0.3744077

0.8550490

∓0.3587618

 , ê(3)
± =

 0.8318666

−0.4806589

∓0.2774256


are the corresponding eigenvectors, or conditional EOF’s for the Lorenz model.
For full details of this sampling algorithm, see Appendix C. In the case of MFF
we could resample using (42) directly, without an accept/reject criterion, because
in MFF the covariances of the Gaussian mixture components for the updated
distribution are just the constant matrices C± in (41). This is true in general for
MFF and is another simplifying feature of that method.

Now let us consider results for Experiment C obtained by the different particle
filtering schemes.

In Figs. 13 and 14 we illustrate the convergence of the WRF method. The
optimization in (39) gives δN = 0.6 for N = 102, and δN = 0.1 for N = 104.
The plots in Fig. 13(a) and (b) show the results for x̄(t), the conditional mean
of the first coordinate as a function of time, with both numbers of samples.
Clearly, there is little difference between the WRF results with N = 102 and
N = 104. For comparison, we have plotted the original solution trajectory from
which measurements were extracted. As can be seen, the “real” solution is here
nearly recoverable from the measurements. Figure 14(a) and (b) shows σx (t), the
conditional standard deviation of the first coordinate, for both values of N , and
these also differ very little. Similar results have also been found for statistical
moments of the other variables y, z of the system. Thus, the WRF results for
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Fig. 13. WRF results for x̄(t) in Experiment C with 
T = 2/3. (a)N = 102, δN = 0.6, (b) N =
104, δN = 0.1, and (c) N = 102, δN = 0.1. Measurement data shown as circles, mean as solid line,
original solution trajectory as dot-dashed line.

N = 104 appear to be converged, and we shall take them as the exact conditional
statistics of the Lorenz model with these measurements and use them as a standard
of comparison for the other particle filters. It should be noted that, although the
WRF results with N = 102 are already quite accurate, this depends crucially upon
the choice of kernel width as the optimal value δN . In Figs. 13(c) and 14(c) we
show that the WRF results for x̄(t) and σx (t) with N = 102 are quite different
if we use instead δ = 0.1, for example. In general, the results of WRF in this
deterministic model depend quite sensitively on the choice of kernel width δ. To
get the good results in Figs. 13(a) and 14(a) with N = 102, we had to scan over
about 100 values of δ to find the approximate minimum in (39). This is the same
amount of work as to carry out the calculation with N = 104 for just a single
kernel width. Thus, for very high-dimensional deterministic dynamics WRF as
employed here would not be a practical filtering method.

We shall present results for EnKF, MEF, and MFF with N = 102, all com-
pared with results of the optimally-tuned WRF method for N = 104, taken as ex-
act. We will not show results of EnKF, MEF and MFF for N = 104, because they
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Fig. 14. WRF results for σx (t) in Experiment C with 
T = 2/3. (a) N = 102, δN = 0.6, (b) N =
104, δN = 0.1, and (c) N = 102, δN = 0.1. The conditional standard deviation is plotted versus time
as a solid line.

are almost identical to those for N = 102. We can thus assume that the latter well
represent the converged approximations of the parametric methods as N → ∞.

We first give in Table III the relative errors in means and standard deviations
of the x-coordinate for each of the three methods with N = 102, as functions of
the sampling interval 
T . We see that MFF gives the least good results for all

T considered. EnKF and MEF switch roles, with EnKF performing better for
small 
T ≤ 1/3 and MEF better for large 
T ≥ 2/3. The slight superiority of
EnKF over MEF for small 
T must be due to the fact that, at measurement times,
EnKF uses a gaussian model for the forecast density whose mean and covariance
are those of the full three-dimensional state vector x = (x, y, z)
. In contrast,
MEF uses the mean and covariance only of the measured vector ht (x) = (x, y)


to construct its model prior. When measurements are very frequent, this additional
information incorporated in EnKF proves advantageous. Of course, the MEF
method could be modified to use as well the mean and covariance of the full state
vector in order to construct its model prior, although this might prove expensive
in practice. When the sampling interval 
T is large, then the system has more
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Table III. Relative Errors in Experiment C


T EnKF MEF MFF

(a) Filter Mean
1/6 0.0950 0.2458 0.4229
1/3 0.2211 0.3329 0.6081
2/3 0.6341 0.5558 0.7489
4/3 0.8164 0.7498 0.8315

(b) Filter Standard Deviation
1/6 1.0457 1.7846 7.6775
1/3 1.5034 1.6041 4.4428
2/3 1.1548 1.0200 1.8964
4/3 0.7215 0.6529 1.0528

time between observations to relax to its invariant distribution on the two-winged
butterfly attractor and, in that case, MEF profits from its two-component mixture
model of the forecast density. In the rest of this section we shall consider only the
case 
T = 2/3 where MEF is marginally superior to EnKF.

In Figs. 15 and 16 we show the results of the EnKF, MEF, and MFF methods
with N = 102 for the mean x̄(t) and the standard deviation σx (t). As expected, we
see that all of the methods do a reasonable job of approximating the filter mean,
with the MEF errors smaller by about 10–20 percentage points than those of the
other two, and with the EnKF errors just slightly smaller than those for MFF. All
of the methods underestimate—or even miss—a few transitions that occur in the
exact filter mean but follow its general trends. For the filter standard deviation,
MEF and EnKF perform quite similarly, but MFF is considerably worse. While
all three methods tend to overestimate the standard deviations, those for MFF are
2–3 times too large. The results that we see here are generally consistent with
those obtained in other estimation experiments we have performed on the Lorenz
model (38). We find that for the means MEF is somewhat better at larger sampling
intervals than EnKF, which is itself slightly better than MFF, but all three perform
rather well. All three methods give standard deviations too large, but MFF much
larger than the other two.

Although only modest gains have been achieved for the filter mean and
variance by the use of our entropy methods, it may be that their performance
is substantially better for the log-likelihood and relative entropy, as we found in
the previous double-well diffusion model. In Fig. 17 we plot the results for the
log-likelihoods of the three methods EnKF, MEF, and MFF with N = 102 for
Experiment C with 
T = 2/3. The results of WRF with N = 104 are again taken
as exact. By comparison, MEF performs best, MFF second best, and EnKF least
well. It is interesting to note that MFF overestimates the log-likelihoods, although
it also overestimates the variances in Fig. 17. This seems to be due to MFF’s
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Fig. 15. Approximate filter means x̄(t) for Experiment C with 
T = 2/3 and N = 102. (a) EnKF,
(b) MEF, and (c) MFF. Measurement data shown as circles, approximations as solid lines, exact filter
result (WRF) as dot-dashed line.

missing prefactors in its estimate of lnNt . We can make a crude estimate of the
correction as − 1

2 ln[(2π )qDetCY
t−], which is exact for linear dynamics. If we add

this correction to the MFF result for the log-likelihood (not shown), then it also
becomes an underestimate and lies between the results of MEF and EnKF.

Lastly, we consider the relative entropy approximated using the three meth-
ods, EnKF, MEF and MFF. These are plotted in Fig. 18(a)–(c) for each method with
N = 102. As for the means and variances, the results on entropy with N = 102

were so similar to those for N = 104 that the latter need not be considered here. It
can be seen that all of the approximate entropies behave qualitatively similarly, ris-
ing discontinuously at measurements and then decaying between measurements,
but non-monotonically. This behavior may seem paradoxical, in view of the fact
that the exact relative entropy H (P(t)|Q)—where P(t) is the filter measure on the
Lorenz attractor and Q = P∗ is the invariant measure—does not change in time
between measurements. However, the approximate entropies that have been con-
structed all have the property that they must converge to zero at long times between
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Fig. 16. Approximate filter standard deviations σx (t) for Experiment C with 
T = 2/3 and N = 102.
(a) EnKF, (b) MEF, and (c) MFF. Approximations shown as solid lines and exact filter result (WRF) as
dot-dashed line.

measurements, because the moments employed, such as x(t), y(t), x2(t), y2(t),
etc. all converge as t → ∞ to the corresponding averages in the invariant measure
x∗, y∗, etc. As a consequence, limt→∞ PM (t) = QM , so also H (PM (t)|QM ) → 0.

Since the approximate entropies are based upon only a few statistical moments of
the Lorenz system, this amounts to an implicit “coarse-graining” of the entropy.

In fact, it follows from the exponential formula (12) for the maximum-entropy
distribution that, in the MEF method, H (PM (t)|QM ) = H (P̃M (t)|Q̃M ), where
P̃M , Q̃M are the marginal distributions of PM , QM on measured variables (here, x
and y). Because the invariant measure Q = P∗ of the Lorenz model is smooth on
unstable manifolds,(65,68) the marginals P̃(t), Q̃ both have densities with respect
Lebesgue measure on the 2-dimensional space of x, y coordinates and H (P̃(t)|Q̃)
is finite. However, unlike H (P(t)|Q), which is time-independent, the relative
entropy of the marginal measures P̃(t), Q̃ is expected between measurements
to converge toward zero (but not necessarily monotonically). Thus, it is more
proper to compare the MEF entropy with H (P̃(t)|Q̃). We have approximated the
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Fig. 17. Log-likelihoods L1: t versus time t for Experiment C with 
T = 2/3 and N = 102 samples:
(a) EnKF, (b) MEF, (c) MFF. The circles (joined by dotted lines) are the exact values from the WRF
method with N = 104, and the black dots (joined by solid lines) are approximations from the other
particle filters.

latter using the WRF solution to construct histograms that represent the densities
P̃(x, y; t), Q̃(x, y) in the x, y-plane and then used a discrete quadrature formula
for the integral (10). The results are shown in Fig. 18(d) for histograms on a
40 × 40 grid in the rectangle −20< x <20,−28< y <28 with N = 104 samples.
The resolution is low and the statistical fluctuations are still quite large, but these
results will suffice for a rough comparison. While the MEF entropy does not agree
perfectly with this relative entropy of the marginals, it does show qualitatively
similar behavior and it is more accurate quantitatively than either EnKF (which is
too large) and MFF (which is too small).

5. SUMMARY AND CONCLUSIONS

In this paper we have introduced two new entropy-based particle filter-
ing schemes. The first method uses maximum-entropy parametric models to
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Fig. 18. Entropy for Experiment C with 
T = 2/3 and N = 102. (a) EnKF; (b) MEF; and (c) MFF;
(d) Relative entropy of xy-marginals using WRF with N = 104.

implement the update by Bayes’ Theorem at measurement times, and has been
called by us the Maximum Entropy Filter (MEF). The second method updates the
filter densities by a maximum-entropy criterion that implements Bayes’ Theorem
only in a mean-field sense, and was called by us the Mean-Field Filter (MFF). We
have compared these new methods with two standard ensemble/particle filters, the
Weight Resampling Filter (WRF) and the Ensemble Kalman Filter (EnKF), which
are reviewed in Appendix A. In terms of the computational cost to implement
them for a fixed number of samples, the methods can be ranked in order, from
cheapest to most expensive, as WRF, MFF, EnKF, and MEF, when p � q � 1.

Here the integer p is the dimension of the state space and q is the dimension of
the measured random variable. See Appendix D.

With small samples sizes N , the standard methods perform very poorly
when there are subsets of the state space that have low priori but high posteriori
probabilities, as in our Experiment A. Although WRF gives optimal results in
the limit N → ∞, events of low priori probability are insufficiently represented
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when the number of samples is too small. The method may thus converge only
with quite large N . In EnKF, the probability density in state space before the
measurement is modelled by a Gaussian density centered in the region of high prior
probability. Unless subsequent measurements are very accurate (lower variance
than the Gaussian model) or very frequent, the gain from the measurements is
insufficient to shift the state to the regions of high posterior probability. The
parametric resampling methods that have been introduced in this paper were
designed to work better precisely in the circumstance where there is a large
disparity between priori and posteriori probabilities. This superior performance
has been confirmed in our experiment A with N = 102, where MEF performed
the best and MFF second best of all the four methods. In circumstances such as
these, MEF should be preferred, but MFF is an acceptable, cheaper substitute if
the former is unaffordable.

Even when the ratios between prior and posterior probabilities are not large,
the optimally convergent WRF scheme encounters another difficulty with de-
terministic dynamics, as in our Experiment C, because the resampling step is
ineffectual in such cases. We have found that a modification using a density kernel
method to represent the filter density in state space may give good results with
small N . However, the accuracy of this representation can depend sensitively on
the kernel width, and it will not be practical to search for the optimal width if only
a small number of samples is available. Here, EnKF can work well with moderate
N , and, based on the Experiment C that we performed, it can be recommended, at
least when the number of measurements q is not too large. MEF gives somewhat
better results at large sampling intervals but is also more expensive. If q � 1, then
both MEF and EnKF may be too costly to apply, unless further improvements of
the algorithms are made.(3,18,31,34) In that case, MFF is a practical substitute.

Where these difficulties do not occur, as in our Experiment B, WRF can
give the optimal results economically with small N . In such cases, or where large
numbers of samples are readily available, it is the preferred method.

The parametric resampling methods introduced in this work are very ro-
bust. While WRF and EnKF may or may not perform well, depending on the
circumstances, MEF gave results of quality from excellent to good in all of the
experiments we performed. The results of MFF were less accurate, but generally
acceptable and less costly. Both MEF and MFF converge rapidly as the number of
samples N is increased, and, except for larger fluctuations, gave nearly the same
results for N = 10 ∼ 102 as for N = 104. The price that must be paid for these
advantages is that the parametric methods cannot be carried out “blindfolded” but
require some prior knowledge of the system. In the method as presented here,
we constructed the parametric densities by minimizing the information relative to
a carefully chosen model of the background distribution (with no measurements
whatsoever). This is a well-motivated choice for Markov stochastic processes,
because of an “H -theorem” which requires that the relative entropy decreases
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monotonically in time. Even for deterministic dynamics, the relative entropies
of marginal distributions—which are the only statistics practically accessible for
large-scale systems—converge to zero. Our maximum-entropy parametric mod-
els have other important practical advantages for the filtering problem: matching
parameters to ensemble statistics can be carried out by minimization of a convex
function; the Bayes update is implemented by a trivial change of parameters; and,
efficient methods exist for sampling from the maximum-entropy distributions.
The algorithms yield as side-products the log-likelihood and relative entropy,
which are of independent interest. We believe these features should make the
maximum-entropy filtering methods very useful in a variety of applications to
high-dimensional nonlinear dynamical systems.

The initial tests that we have made here are only for quite low-dimensional
dynamics, although the formalism has been developed with high (or even infinite-
dimensional) dynamical systems in mind. In a paper in preparation, we demonstrate
the good performance of our entropy-based filtering schemes for a stochastic PDE
model of oceanic thermohaline circulation.(8,20) This model has two stable steady
states of circulation and a consequent bimodality of its statistics that is readily
described by a two-component mixture. We anticipate that our methods will work
well, in general, for large-scale systems whose statistics are well-described by a
Gaussian mixture model of relatively low complexity.
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APPENDIX A: STANDARD ENSEMBLE FILTERS

In this appendix, we briefly review some of the standard particle/ensemble
methods that have been proposed to solve the optimal filtering problem.

A.1. Convergent Particle Schemes for Optimal Filtering

The basic idea of all ensemble/particle methods is to employ an ensemble
x(n)

t , n = 1, . . . , N of solutions of (1) with independent realizations of the noise
in order to approximate the filter densities by empirical measures

P (N )(x, t) =
N∑

n=1

w
(n)
t δ p

(
x − x(n)

t

)
. (43)
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The non-negative real numbers w
(n)
t , n = 1, . . . , N are called importance weights

and must satisfy
∑N

n=1 w
(n)
t = 1. In common to all these methods is the very de-

sirable property that they implement the prediction step (5) in the Bayes recursion
exactly, at least in the limit N → ∞. Various methods differ in how they approx-
imate the update step (6).

In the simplest approach, the sample weights are updated by the formula

w
(n)
t+ = Gt

(
yt |x(n)

t

)
Nt

w
(n)
t− , n = 1, . . . , N (44)

which is determined so that the N -sample approximations (43) satisfy (6) exactly.
As in (6), Nt is a normalization factor to ensure that

∑N
n=1 w

(n)
t+ = 1 for all

times t . If the initial samples are chosen so that x(n)
0 , n = 1, . . . , N are i.i.d.

distributed according toP0, then the initial weights may be taken to be w
(n)
0 = 1/N

for all n = 1, . . . , N . Initialized in this manner, the algorithm outlined above
provides a systematic approach to approximating the filter distributions, via (43).
For convenient reference, we shall call this simple standard particle method the
Weighted Ensemble Filter (WEF). For more details, see refs. 12, 36. It has been
proved by Moral(46) that the approximate filter densities produced by this method
converge (weakly) to the optimal filter density as N → ∞. Unfortunately, despite
being a convergent method, WEF often performs poorly in practice. As can be seen
from (44), if measurements are very accurate or if the outcomes of measurement
are very far from the predictions of the samples, then updated weights may be
very small. In that case, the effective size of the ensemble can be much less than
N , since samples with small importance weights do not contribute significantly
to any averages. Therefore, the convergence of the WEF algorithm is often quite
slow.

To overcome the difficulty with non-uniform weights, the update (44) in
the above method may be augmented with a resampling step, as was originally
suggested by Metropolis and Ulam.(44) That is, a new ensemble x(n)

t+ , n = 1, . . . , N
with uniform weights 1/N may be selected independently from the set of pre-
measurement samples x(n′)

t− with probabilities w
(n′)
t+ , for n′ = 1, . . . , N . In the

process, realizations with high probability are multiply resampled and “cloned,”
while states with low probability are not sampled at all and become “extinct”. In the
case of genuinely stochastic dynamics, the resampling procedure described above
may already suffice. However, for deterministic dynamics, “cloned” individuals
have identically the same behavior in the future and act collectively as a single
sample with high weight. In that case, the results with resampling are equivalent to
those for WEF. To deal with this situation, the representation of the filter density
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by means of the empirical measure (43) may be improved with kernel smoothing:

P (N , δ)(x, t) =
N∑

n=1

w
(n)
t K p

δ

(
x − x(n)

t

)
, (45)

where the “density kernel” K p
δ (x − x′) is an approximate delta function in R

p with
width proportional to δ.(57,58,67) Resampling from a distribution like (45) may be
accomplished in two steps: first, select an index n′ = 1, . . . , N in the sum with
probability w

(n′)
t and, second, select a random sample x(n)

t = x(n′)
t + ρ(n) where ρ(n)

are i.i.d. samples drawn from K p
δ (ρ), successively for n = 1, . . . , N . If the density

kernel is of a simple standard type, such as a multivariate Gaussian or a uniform
distribution on a hypercube, then there are efficient algorithms for drawing the
random samples from K p

δ (ρ). In this way, the problem of “cloned” samples is
eliminated by the random perturbations or “mutations” of each sample. If the
kernel width is chosen δN as a function of N so that δN → 0 suitably as N → ∞,

then the kernel density estimator (45) will also converge to the true density P(x, t)
as N → ∞. We refer to standard texts(57,58,67) for more details.

The algorithm with resampling as described above is one of the most widely
used particle filtering methods (e.g. see ref. 12), which we shall refer to, for
convenience, as the Weighted Resampling Filter (WRF). As with the simpler WEF
method, the approximate density from WRF has been proved to converge weakly
to the optimal filter density as N → ∞ (refs. 45, 47 or 10 for a recent review.) The
rate of convergence of the approximation error to zero is the same as for standard
Monte Carlo, i.e. O(N−1/2). In order to choose a large enough value of N , one
may simply monitor the convergence of statistics of interest for increasing number
of samples. Alternatively, a recent paper22 has proposed a method whereby the
number of samples required for convergence may be determined automatically.
The WRF method has become popular because it is simple to use, handles with
ease nonlinearity of the dynamics and non-Gaussianity of statistics, and gives
optimal results under conditions that are frequently achievable in practice. It is
possible to construct examples that “break” this method, even with N quite large,
but WRF is probably the method of choice in cases where a large number of
samples are readily available.

A.2. Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) was proposed by Evensen(16,17) (with an
important correction in Burgers et al.(7)). This is also a sequential particle filtering
method, like those discussed in the previous subsection. However, the update
by Bayes’ theorem is only implemented approximately. It applies in the most
straightforward form only when observation errors are normal random vectors
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with mean 0 and covariance Rt and when measurement functions are affine,

ht (x) = Ht x + dt , (46)

where Ht is a q × p matrix and dt is a q-vector for each time t. If the measured
variables are not given by an affine state function, then an extension of the method
is required. One approach is to linearize the measurement function by a Taylor
expansion around the mean, with ht (x) = ht (x) + Jt ·(x − x) + O(|x − x|2) trun-
cated to linear terms.(33) However, this approach requires a calculation of the Jaco-
bian matrix Jt and, furthermore, appeals to a linear approximation which may be
inaccurate. A second and more theoretically satisfactory approach is to extend the
state-space by working with the joint state-observation vector z = (x, ht (x)).(3,63)

In this extended state-space the measurement function is always given by a linear
projection, i.e. ht (x, y) = y. The major virtue of this method is that it treats the
nonlinearity in the measurements exactly.

As in all Kalman filtering schemes, the statistical basis of EnKF is the use of a
Gaussian model for the prior P(x, t−). The mean and covariance of this model are
obtained by empirical averages over the N -sample ensemble. A new ensemble is
then generated by performing, for each sample state, a linear interpolation between
the original state and a sample measurement, weighted by the so-called “Kalman
gain matrix”. The EnKF update algorithm may be divided into three steps, as
follows:

(i) Matching: The mean µt− and covariance Ct− before the measurement are
obtained from particle averages:

µt− = 1

N

N∑
n=1

x(n)
t− , Mt− = 1

N

N∑
n=1

x(n)
t−
[
x(n)

t−
]


(47)

with Ct− = Mt− − µt−µ

t− .

(ii) Resampling: An N -sample ensemble of measurement outcomes is gener-
ated from

y(n)
t = yt + ε

(n)
t , n = 1, . . . , N (48)

where ε
(n)
t , n = 1, . . . , N are i.i.d. N (0, Rt ) random vectors.

(iii) Updating: A new N -sample ensemble of state vectors is obtained from

x(n)
t+ = x(n)

t− + Kt

[
y(n)

t − ht

(
x(n)

t−
)]

, (49)

with

Kt = Ct−H

t [Ht Ct−H


t + Rt ]
−1, (50)

the Kalman gain matrix
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An easy computation(7) shows that the mean and covariance of the updated en-
semble are given in the limit N → ∞ by

µt+ = µt− + Kt

[
yt − µH

t−
]

(51)

Ct+ = Ct− − Kt

[
CH

t− + Rt

]
K


t , (52)

where µH
t− = Htµt− + dt and CH

t− = Ht Ct−H

t are the mean and covariance,

respectively, of the measured variable ht (x) in the N -sample ensemble before
the measurement. These formulas are the well-known results of the Kalman
filtering procedure, which are derived by applying Bayes’ theorem to a Gaus-
sian prior.(24) Notice, however, that the posterior density P(x, t+) represented
by the samples x(n)

t+ , n = 1, . . . , N is non-Gaussian, because the original sam-

ples x(n)
t− , n = 1, . . . , N are drawn from a non-Gaussian density P(x, t−). The

Gaussian model N (x; µt− , C t− ) for the prior distribution has the same mean and
covariance as the N -sample ensemble before the measurement, but other moments
of the two distributions will be generally unequal. Thus, the Ensemble Kalman
Filter is only guaranteed to give the correct conditional statistics, in the limit
N → ∞, when the system statistics are indeed Gaussian. Otherwise, its estimates
of the conditional mean and covariance converge to suboptimal values.

APPENDIX B: MAXIMUM-ENTROPY THERMODYNAMICS

In this appendix we derive the equations of a “thermodynamic formalism”
for maximum-entropy mixture models. We assume that the measurement function
is affine, h(x) = Hx + d, and consider the mixture model (9), with

N (x; µm, Cm) = exp
[− 1

2 (x − µm)
C−1
m (x − µm)

]√
(2π )pDetCm

. (53)

If the measurement function is not affine, then the procedures discussed below
can still be applied, by employing similar devices as those discussed in Ap-
pendix A for Kalman filtering, including linearization(33) and extended state-space
formulations.(3,63)

We first prove the following simple but useful lemma:

exp

[
λ·h(x) + 1

2
�:h(x)h
(x)

]
N (x; µm, Cm) = Zm(λ,�)N (x; µm(λ,�), Cm(�))

(54)

with functions Zm(λ,�),µm(λ,�), Cm(�) described in detail below. Since the
lefthand side in (54) is a product of Gaussians, the equality is proved easily by
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completing the square, with the results:

Cm(�) = (
C−1

m − H
�H
)−1

(55)

µm(λ,�) = µm + Cm(�)H
(λ + �µH
m

)
(56)

Zm(λ,�) =
√

DetCm(�)

DetCm
exp

[
λ
d + 1

2
d
�d

−1

2
µ


mC−1
m µm + 1

2
µ


m(λ,�)C−1
m (�)µm(λ,�)

]
. (57)

Here we introduce µH
m = Hµm + d and CH

m = HCmH
, the mean and covari-
ance of h(x) for x an N (µm, Cm) random variable.

These formulas can be simplified by using the following matrix identities,
valid for A and C any p × p and q × q non-singular matrices, respectively, and
B an arbitrary q × p matrix:

(A−1 + B
C−1B)−1 = A − AB
(BAB
 + C)−1BA, (58)

(A−1 + B
C−1B)−1B
 = AB
(BAB
 + C)−1C. (59)

These identities are standard in the Kalman filtering literature.(24) From (58) it
follows immediately that

Cm(�) = Cm + CmH

H
m

[

H

m − �
]−1

�HCm, (60)

where we have defined 
H
m = [CH

m ]−1. Note that we have written this formula so
that it is valid even if � is singular. Applying (59) gives likewise

µm(λ,�) = µm + CmH

H
m

[

H

m − �
]−1(

λ + �µH
m

)
(61)

In these formulas, the combination Km = CmH

H
m (� − 
H

m )−1� is the ana-
logue of the Kalman gain matrix and rm = HCm the representer of the mth
mixture component.(6,66) [In fact, our calculations here are a natural generaliza-
tion of the representer solution for Gaussian mixture models; e.g. see (64) below.]
Finally, simplifications can be made in the exponent of the normalization factor
Zm(λ,�) by using the formula

C−1
m (�)µm(λ,�) = C−1

m µm + H
(λ + �d)
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and dotting with formula (56) for µm(λ,�). Cancelling many terms, one finds
finally that

Zm(λ,�) =
√

Det
H
m

Det(
H
m − �)

exp

[
−1

2

(
µH

m

)


H

m µH
m

+ 1

2

(

H

m µH
m + λ

)
(

H

m − �
)−1(


H
m µH

m + λ
)]

. (62)

We have also used the identity, for p × q matrix A and q × p matrix B,

Det(I − AB) = exp

[
−

∞∑
k=1

1

k
Tr((AB)k)

]
= Det(I − BA),

by cyclicity of the trace, in order to write

Det(Cm)/Det(Cm(�)) = Det(Cm) · Det
(
C−1

m − H
�H
)

= Det(I − CmH
�H) = Det(I − �HCmH
)

= Det
[
I − �

(

H

m

)−1] = Det
(

H

m − �
)/

Det
(

H

m

)
.

For purposes of numerical evaluations on the computer, it is convenient to
introduce ηm(λ,�) as the solution of the linear equation(


H
m − �

) · ηm(λ,�) = 
H
m µH

m + λ. (63)

This equation can be solved using a Cholesky factorization of 
H
m − �, since this

matrix must be positive-definite in order for the model density to be statistically
realizable with the given matrix �. [Notice that ln Zm in (62) must be a convex
function of λ for realizability to hold; moreover, (55), (59) imply that (
H

m −
�)−1 = HCm(�)H
 = CH

m (�), which must be positive-definite.] Introducing
the solution ηm(λ,�) into (61) gives

µm(λ,�) = µm + CmH

H
m · [ηm(λ,�) − µH

m

]
(64)

The Cholesky factor can also be used to calculate the inverse [
H
m − �]−1 and the

determinant Det(
H
m − �) that appear in the formulae (60) and (62) for Cm(�)

and Zm(λ,�), respectively. In fact, we may rewrite (62) somewhat to eliminate
the inverse matrix:

Zm(λ,�) =
√

Det
H
m

Det
(

H

m − �
)×

exp

[
−1

2

(
µH

m

)


H

m µH
m + 1

2

(

H

m µH
m + λ

)

ηm(λ,�)

]
. (65)

It is important for the numerical feasibility of these calculations that 
H
m − � is a

q × q matrix, where we assume that q � p.
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The derivatives of Zm are also straightforward to evaluate. We use

ln Zm(λ,�) = 1

2

(

H

m µH
m + λ

)
(

H

m − �
)−1(


H
m µH

m + λ
)

−1

2

(
µH

m

)


H

m µH
m − 1

2
Tr
[

ln
(

H

m − �
)− ln 
H

m

]
(66)

and two standard identities for differentiation of a matrix with respect to a param-
eter: ∂

∂λ
A−1 = −A−1 ∂A

∂λ
A−1 and ∂

∂λ
Tr ln A = Tr(A−1 ∂A

∂λ
). Then

∂ Zm

∂λ
(λ,�) = Zm(λ,�)ηm(λ,�), (67)

for i �= j,

∂ Zm

∂�i j
= Zm(λ,�)

{
[ηm(λ,�)]i [ηm(λ,�)] j + [(


H
m − �

)−1]
i j

}
, (68)

and for i = j,

∂ Zm

∂�i i
= 1

2
Zm(λ,�)

{
[ηm(λ,�)]i [ηm(λ,�)]i + [(


H
m − �

)−1]
i i

}
, (69)

We can now easily deduce the results claimed in the text. First we derive
the mixture representation (15) of the maximum-entropy densities. This follows
directly from the main lemma (54) with

Z (λ,�) =
M∑

m=1

wm Zm(λ,�) (70)

and

wm(λ,�) = wm
Zm(λ,�)

Z (λ,�)
, (71)

where Zm(λ,�),µm(λ,�), Cm(�), m = 1, . . . , M are given by (65), (64), (60).
Second we derive the thermodynamic functions for the mixture model, starting
with F(λ,�) = ln Z (λ,�) and Z (λ,�) given in (70). The derivatives are then
obtained from

∂ F

∂λ
(λ,�) = 1

Z (λ,�)

M∑
m=1

wm
∂ Zm

∂λ
(λ,�)

and the similar formula for the derivative with respect to �. Using (67)–(69) one
obtains:

∂ F

∂λ
(λ,�) =

M∑
m=1

wm(λ,�)ηm(λ,�), (72)
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for i �= j,

∂ F

∂�i j
=

M∑
m=1

wm(λ,�)
{[(


H
m − �

)−1]
i j

+ [ηm(λ,�)]i [ηm(λ,�)] j

}
(73)

and for i = j,

∂ F

∂�i i
= 1

2

M∑
m=1

wm(λ,�)
{[(


H
m − �

)−1]
i i

+ [ηm(λ,�)]i [ηm(λ,�)]i

}
. (74)

The computational cost to determine F(λ,�) and its derivatives is dominated by
the Cholesky factorization, for which the operation count (number of multipli-
cations) is O(Mq3). Calculation of the vectors ηm(λ,�) is O(Mq2) operations,
while calculation of the inverses (
H

m − �)−1 requires an additional O(Mq3) op-
erations. This will be feasible as long as M and q are not too large. On the
other hand, even if the p × q matrices CmH

H

m and q × p matrices HCm are
stored in advance, calculating µm(λ,�), Cm(�) for m = 1, . . . , M from (64) and
(60) requires O(Mpq) and O(Mp2q) operations, respectively, in addition to the
Cholesky factorization. These calculations are expensive if p � q.

All of the above formulae simplify considerably within the mean-field ap-
proximation, and, in fact, remain valid simply upon setting � = O. Thus, (63)
becomes

ηm(λ) = µH
m + CH

m λ, (75)

(65) becomes

Zm(λ) = exp

[
−1

2
(µH

m )

H
m µH

m + 1

2

(

H

m µH
m + λ

)

ηm(λ)

]
, (76)

(64) becomes

µm(λ) = µm + CmH
λ, (77)

and (60) becomes simply

Cm(λ) = Cm . (78)

The thermodynamics also simplifies, with

F(λ) = ln Z (λ) = ln

(
M∑

m=1

wm Zm(λ)

)
, (79)

∂ F

∂λ
(λ) =

M∑
m=1

wm(λ)ηm(λ) = η(λ), (80)

∂2 F

∂λi∂λ j
(λ) =

M∑
m=1

wm(λ)
{[

CH
m

]
i j

+ [ηm(λ) − η(λ)]i [ηm(λ) − η(λ)] j

}
(81)
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and wm(λ) = wm Zm(λ)/Z (λ), as in (71). The cost to calculate ηm(λ), Zm(λ) for
m = 1, . . . , M and F(λ) and its first and second derivatives is O(Mq2), while the
cost to calculate µm(λ) is O(Mpq). Thus, there are considerable savings with the
mean-field approximation.

APPENDIX C: SAMPLING FROM MAXIMUM-ENTROPY MODELS

Direct sampling from the maximum-entropy distributions using the mixture
representation (15) is prohibitively expensive when p � 1. For example, sampling
the Gaussian components using their Karhunen-Loève expansions would require
calculating the EOF’s of the p × p covariance matrices Cm(�+

t ), m = 1, . . . , M
for every new value of �+

t . It might be possible to calculate the EOF’s for the
covariance matrices Cm(t), m = 1, . . . , M of the components of the mixture-
model (9) for QM (x, t), especially if the latter is time-independent or changes
sufficiently slowly in time that only a few representative values of t need be
considered. In that case, a more efficient sampling strategy can be based upon the
identity

C−1
m (�) = C−1

m − H
�H, (82)

the inverse of (55) [where we drop from here on the explicit time label t]. This
formula implies that the Gaussian component N (µm(λ,�), Cm(�)) can be sam-
pled by the Metropolis-Hastings algorithm with N (µm(λ,�), Cm) as the proposal
distribution and with

E(x) = −1

2
[h(x) − ηm(λ,�)]
�[h(x) − ηm(λ,�)] (83)

as the “energy function” to calculate acceptance probabilities. Using the Karhunen-
Loève representation of N (µm(λ,�), Cm), proposed updates have the form

x′ = µm(λ,�) +
p∑

a=1

ξa

√
γ a

m êa
m, (84)

where ξa, a = 1, . . . , p are i.i.d. normal random variables and γ a
m, êa

m are the
eigenvalues and eigenvectors of Cm . Note that the eigensystems do not depend
on � and that the vectors µm(λ,�) can be efficiently calculated from (64). The
updates (84) are accepted with probability min{1, e−
E } to replace a current state
vector x, where 
E = E(x′) − E(x).

An efficient algorithm to sample PM (x; λ,�) is then as follows: First, set
xm = µm(λ,�) as an initial guess of the state in the mth component for each
m = 1, . . . , M . Then, successively for n = 1, . . . , N , choose x(n) by first selecting
a component index m = 1, . . . , M with probability wm(λ,�). For the selected m,
generate a new trial state x′

m via (84) and then accept or reject it compared with the
current state xm by the Metropolis-Hastings algorithm. That is, replace xm with x′

m
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if accepted and otherwise leave xm intact. In either case, after completion of the
trial, take x(n) = xm . In this way, the entire N -sample ensemble x(n), n = 1, . . . , N
will be generated, distributed according to PM (x; λ,�). In practice, it is advisable
to consider some number nT of trial vectors x′

m for each selected component
m and to successively accept or reject them, in order to generate each member
of the N -sample ensemble. This will help to ensure better equilibration in the
Metropolis-Hastings algorithm. Furthermore, it has the benefit for deterministic
dynamics that it helps to guarantee that x(n) = x(n′) for n �= n′, i.e. that members
of the ensemble are not identical.

This Metropolis-Hastings scheme will work well if � is small, but rejection
rates will be high if the values of the energy function E in (83) become large. This
is precisely what occurs as a consequence of the Bayes’ rule update (17), when
measurements are very accurate. In fact, in the limit that ‖R‖ is small,

λ+ = λ− + R−1y ≈ R−1y, �+ = �− − R−1 ≈ −R−1, (85)

and updated values of parameters, to leading order, are independent of their values
λ−,�− before the measurement. In that case, the mixture model PM (x; λ+,�+)
simplifies considerably. It is easy to show using (60), (64), (65) that, as ‖R‖ → 0,

the following asymptotic formulas hold for the component weights

w+
m =

wm exp
{
− 1

2

[
y − µH

m

]


H

m

[
y − µH

m

]}
N
√

DetCH
m

[1 + O(‖R‖)] (86)

(where N is a normalization factor), for component means

µ+
m = µm + CmH

H

m

(
y − µH

m

)+ O(‖R‖) (87)

and for component covariances

C+
m = Cm − CmH
(
H

m − 
H
m R
H

m

)
HCm + O(‖R‖2). (88)

Notice that the exponential factor in (86) is the normal density N (y; µH
m , CH

m ) of
the measurement function h(x) in the mth component, evaluated at the measured
value y. Notice also that Hµ+

m + d = y + O(‖R‖) from (87) and that HC+
mH
 =

R + O(‖R‖2) from (88), as would be expected for the limit of very accurate
measurements. A simple sampling scheme in this limit, therefore, is to choose
components m = 1, . . . , M with the probabilities w+

m in (86) and then to draw
samples from the selected Gaussian component N (µ+

m, C+
m) directly, e.g. using

its Karhunen-Loève representation. For that purpose, the EOF’s of the covariance
matrices C+

m may be calculated and stored in advance. It is crucial that C+
m in (88)

does not depend upon λ−,�−.

The two sampling schemes that have been discussed in this section of the
Appendix are efficient and accurate for opposite limits of large ‖R‖ and small
‖R‖, respectively. Therefore, the best results should be obtained from a hybrid
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approach, that switches from the first method to the second as ‖R‖ decreases.
As a practical criterion for switching, the rejection rate of the nT proposals in
the Metropolis-Hastings algorithm may be monitored and the second method
employed when the rejection rate becomes too large in the first method.

APPENDIX D: COMPUTATIONAL COSTS OF THE METHODS

We here briefly compare the computational costs of the four main particle
filtering methods considered: WRF, EnKF, MEF, and MFF.

WRF: The main cost lies in the computation of the probability density of mea-
surement errors, Gt (yt |x(n)), n = 1, . . . , N for the update (44). When this density
is Gaussian, O(q3) multiplications are required to calculate the determinant DetRt

and inverse R−1
t , then O(Nq2) multiplications to calculate the quadratic forms

[yt − ht (x(n))]
R−1
t [yt − ht (x(n))] and N pq multiplications to calculate the values

h(x(n)) of the linear measurement function (46), for n = 1, . . . , N . Resampling
requires just N independent random numbers.

EnKF: An efficient scheme to implement EnKF is the representer
method.(6,66) In this approach, the q × p representer matrix r = HCt− is evaluated
as the N -sample covariance of the forecast measurement outcome and of the fore-
cast state vector, requiring O(N pq) multiplications. Likewise, CH

t− = HCt−H
 is
calculated as the N -sample covariance of the forecast measurement outcome vec-
tor, requiring an additional O(Nq2) multiplications. In the limit p � q which
mostly concerns us, this cost is smaller than that to calculate the represen-
ter matrix. Calculation of the inverse and/or Cholesky factors of CH

t− + Rt is
O(q3) multiplications and calculation of the N representer coefficient vectors
b(n) = [CH

t− + Rt ]−1[y(n) − ht (x(n))] requires an additional O(Nq2) operations,
either by matrix multiplication with the inverse or by backsubstitution using the
Cholesky factors. Additionally, Nq random numbers must be generated for the
measurement resampling in (48). Finally, update of x(n)

t− to x(n)
t+ for n = 1, . . . , N

is obtained via x(n)
t+ = x(n)

t− + r
b(n), equivalent to (49). This is requires O(N pq)
operations, equal in cost to the calculation of the representer matrix.

Other implementations of EnKF(3,18,31,34) make different trade-offs and may
have costs that scale differently in the parameters N , p, q. For example, ref. 18 has
used a standard matrix identity to avoid inversion of the q × q matrix CH

t− + Rt

at cost O(q3) and to replace it instead with inversion of an N × N matrix at cost
O(N 3). When q � N , the latter may be far smaller.

MEF: Calculating the measurement forecast moments in (11) requires
O(Nq2) multiplications, which is smaller by a factor of q/p than the work required
to obtain the representer matrix in EnKF. The matching and updating steps, (14)
and (17), take place entirely in the space of 1

2 q(q + 3) variables (λ,�). Hence,
these are relatively inexpensive when q � p. As discussed above, calculation
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of Ft and its gradients at one value of (λ,�) requires O(Mq3) multiplications.
Hence, the total cost of the optimization in (14) by conjugate-gradient (CG) is
O(nCG Mq3), where nCG is the number of iterations. For our convex cost func-
tion, CG is convergent globally but, generally, only linearly. Hence, it is better
in practice to use a hybrid algorithm that switches to a superlinearly conver-
gent, quasi-Newton method close to the solution, if storage of an approximate
Hessian is affordable. The most expensive step of the algorithm, however, is the
resampling. This can be accomplished, for example, using the standard sampling
scheme (18) for the Gaussian components of the mixture model (15). As discussed
above, calculating µm(t ; λ,�) and Cm(t ; �) for m = 1, . . . , M in (15) requires
O(Mpq) and O(Mp2q) operations, respectively, at each measurement time t . This
is (M/N )(p/q) times the cost to calculate the representer matrix in EnKF, with
M/N small and p/q large. On the other hand, generating new samples by (18)
requires N p random numbers and O(N p2) multiplications, always more expen-
sive than the O(N pq) multiplications for EnKF. Furthermore, a matrix square root
(Cholesky factor or EOF’s) of Cm(t ; �) is required in (18), which costs O(Mp3)
multiplications to calculate. This is very expensive for large p, too expensive in
general to perform at each measurement time t.

If the model prior distribution QM (x, t) in (9) is time-independent (or varies
sufficiently slowly in time), then there is the alternative sampling method dis-
cussed in Appendix C using a Metropolis-Hastings algorithm. In this scheme,
proposals are generated from the Gaussian components in the mixture model
for the prior (9). A number nT of such trials are successively generated and ac-
cepted/rejected according to a Metropolis criterion, in order to produce each new
ensemble member. An advantage of this approach is that one does not need to
calculate the covariance matrices Cm(t ; �) in (15) at all. One saves O(Mp2q)
multiplications by avoiding the calculation of updated covariances. On the other
hand, this alternative algorithm requires N pnT random numbers and O(N p2nT )
multiplications to generate the new ensemble. The main savings lies in the fact that
one needs only to calculate Cholesky factors or EOF’s of the (time-independent)
covariances Cm, m = 1, . . . , M in (9) at the outset of the algorithm, a single-time
cost of O(Mp3), rather than to calculate new matrix square roots at each measure-
ment time. Since it will be true generally that nT � p, this provides considerable
economy when measurements are taken at many times.

Even with the most efficient implementations that we have been able to devise,
this MEF algorithm is substantially more expensive than EnKF. The additional cost
can only be justified by improved accuracy of the results. Substantial savings can
be obtained by making some further approximations, for example, truncation of
the K-L expansion (19) to a maximum number of EOF’s pmax � p. Finding just
the pmax leading eigenvalues and eigenvectors of Cm for m = 1, . . . , M requires
O(Mp2 pmax) operations, e.g. by iterative Arnoldi methods. This is smaller by a
factor of pmax/p than the cost to determine all of the eigenvalues and eigenvectors.
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Likewise, Metropolis sampling from the truncated K-L expansion uses N pmaxnT

random numbers and O(N ppmaxnT ) multiplications, smaller by the factor pmax/p.
As with EnKF, alternative implementations of MEF can and should be ex-

plored, for which costs will scale differently than in the algorithms sketched above.
We have only presented the most obvious numerical approaches and the costs that
they entail.

MFF: The number of operations to calculate the function inside the brackets
in (29) and its gradient in (31) is O(Mq2). Hence, the total cost of the matching
step is O(nCG Mq2) when using a conjugate-gradient algorithm. This is smaller by
a factor of 1/q than the cost of the matching for full MEF and smaller by a factor
O(nCG (M/N )(q/p)) than the cost to calculate the representer matrix in EnKF. The
resampling step in the mean-field MEF uses O(Mpq) multiplications to calculate
the means µm(t ; λ), m = 1, . . . , M in (15) [now depending only on λ]. As in MEF
with the Metropolis-Hastings sampling, there is a one-time expense of O(Mp3) to
calculate square roots of the time-independent covariances Cm, m = 1, . . . , M .
Also, N p random numbers and O(N p2) multiplications are needed to generate
new samples by (18). Thus, resampling in MFF is cheaper than in full MEF by a
factor of 1/nT and more expensive than in EnKF by a factor of p/q. However, if
a truncated K-L expansion is used with only pmax terms, as discussed above for
MEF, then this latter factor is instead pmax/q and the cost will be similar as for
EnKF if pmax ≈ q. In that case, MFF will be much cheaper overall than EnKF, the
savings being that it avoids calculation of matrices such as the Kalman gain or the
representer matrix.
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